
ir Version 2.3: Program for Calculating the Index of
Repetitiveness,I

r
, from DNA Sequences

Bernhard Haubold and Thomas Wiehe

May 20, 2007

DNA sequences vary strongly in their repetitiveness. However, the biological causes and consequences of this
repetitiveness remain unclear. To put the investigation ofDNA repetitiveness on a firm quantitative footing, we
have devised the index of repetitiveness,Ir, which is≈ 0 for sequences that contain only the amount of repeats
expected under randomness, and> 0 for sequences with an excess of repeats [1].

Downloading and Compiling ir

A program implementing sequence analysis based on theIr is freely available under the GNU General Public License.
The following instructions for using this software are based on a computer running the LINUX operating system.
However, with a bit of tweaking they should also be applicable to other platforms.

Unpackir

tar -xvzf ir_xxx.tgz

and change into the resulting directory

cd Ir_xxx

Compile the program by typing

make

The command

./ir -h

should now print the following list of program options:

ir version 2.3, copyright (c) 2006-2007 Bernhard Haubold & Thomas Wiehe
distributed under the GNU General Public License.

purpose: calculate the index of repetitiveness, I_r
usage: ir [options]
options:

[-i <FILE> read input from FILE; default: FILE=stdin]
[-o <FILE> write output to FILE; default: FILE=stdout]
[-w <NUM> sliding window of width NUM; default: no sliding window]
[-c <NUM> increment sliding window by NUM positions; default: window_width/10]
[-n <NUM> print NUM characters of header; all if NUM<0; default: NUM=30]
[-s treat each sequence separately; default: union]
[-p print information about program]
[-h print this help message]

http://adenine.biz.fh-weihenstephan.de/
http://jakob.genetik.uni-koeln.de/bioinformatik/people/thomas/index.html
file:/ir/ir_2.3.tgz
http://www.gnu.org/licenses/licenses.html#GPL

Data Format

ir accepts FASTA formatted input data. The program only recognizes positions occupied by one of the four
charactersA, C, G, andT, which can be either in upper or lower case. Other charactersare treated as missing data.
In the computation of globalIr they are ignored. In the window analysis only windows consisting entirely of the
four canonical characters are considered. Windows containing other sequence data are assigned anIr value of
“n/a” for “not available”.

Tutorial

Global I
r

To testir, download the examplegenome ofMycoplasma genitaliuminto the newly created directoryIr xxx
and uncompress it:

gunzip l43967.fasta.gz

To calculate theIr for this sequence, enter

./ir -i l43967.fasta

to get

Len I_r
580076 0.1388

We can compare this to theIr value of the shuffled version of the genome by typing

shuffleseq -filter l43967.fasta | ./ir

whereshuffleseq is part of the EMBOSS software package [3]. TheIr of the shuffled sequence should be
close to zero.

Window Analysis

Instead of just computing anIr for an entire sequence, it is often more informative to look at local variations inIr.
This can be done by carrying out awindow analysis using the-w option. In order to visualize the result of such
a window analysis, we use the programgraph, which is part of theplotutils package. Given a functioning
installation ofplotutils, try

./ir -w 1000 < l43967.fasta \
| graph -y 0 -X Ir -Y Position -T X

where\ indicates line continuation. Notice the very sharp peaks inthe resulting plot corresponding to regions with
exceptional repetitiveness. We can smooth the plot by increasing the window size to, say, 10,000:

./ir -w 10000 < l43967.fasta \
| graph -y 0 -X Ir -Y Position -T X

In order to print our plot, generate it first inxfig format, for example:

./ir -w 10000 < l43967.fasta \
| graph -y 0 -X Ir -Y Position -T fig > mg.fig

The resulting file can now be manipulated using the programxfig. Alternatively, we can convert it to postscript
by typing

fig2dev -L ps mg.fig > mg.ps

Similarly, encapsulated postscript for inclusion in, e.g., LATEX documents can be generated by

fig2dev -L eps mg.fig > mg.eps

file:/ir/l43967.fasta.gz
http://www.emboss.org
http://www.gnu.org/software/plotutils/plotutils.html
http://www.xfig.org/

Multiple Sequences

Multiple sequences can be analyzed either separately, or combinded. To see the difference between these two
modes, compute theIr of the random sequence supplied together with the source files:

cat ranSeq.fasta | ./ir # Len I_r
10000 0.0012

If we add another exact copy of this sequence to the analysis,we expect to see a great increase inIr :

cat ranSeq.fasta ranSeq.fasta | ./ir
Len I_r
20000 6.3702

However, if we switch on theseparate mode of analysis, we return to the lowIr value of the original isolated
sequence:

cat ranSeq.fasta ranSeq.fasta | ./ir -s
Seq Len I_r
>Random Sequence #1; G/C=0.50 10000 0.0012
>Random Sequence #1; G/C=0.50 10000 0.0012

When carrying out a window analysis on multiple sequences itmight be useful to write theIr values of the
different sequences into distinct files. This can be done using the UNIX toolcsplit. For our biologically rather
meaningless example we can execute

cat ranSeq.fasta ranSeq.fasta| ./ir -w 100 | csplit -f dataset -z - /\>/ {1}

to find theIr values for the first sequence indataset01 and those for the second sequence indataset02.

Change Log

1. Up to version 1.1: based on suffix tree as described in our original publication [1].

2. Since version 2.0: based on suffix array, which can be thought of as a space-efficient representation of a
suffix tree. Also gained in speed.

3. Version 2.2: switched from locally varying GC content in sliding window analysis to constant CG content.
In other words, the expected aggregate shustring length,Ae (cf. [1]) is the same for all windows.

4. Version 2.3 (May 20,2007): improved user interface.

Acknowledgments

ir is based on thedss sort library by G. Manzini [2]. We are grateful to Johannes Fischer for drawing our
attention to this software library and to Linda Serpling forhelpful comments on an earlier version ofir.

References

[1] B. Haubold and T. Wiehe. How repetitive are genomes?BMC Bioinformatics, 7:541, 2006.

[2] G. Manzini and P. Ferragina.Engineering a lightweight suffix array construction algorithm, pages 698–710.
Number 2461 in Springer Verlag Lecture Notes in Computer Science. Springer Verlag, 2002.

[3] P. Rice and A. Bleasby. EMBOSS: The European Molecular Biology Open Software Suite.Trends in Genetics,
16:276–277, 2000.

http://www.mfn.unipmn.it/~manzini/lightweight/

