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Chapter 2

Introduction

Automated Annotation in UniProt

The protein databases Swiss-Prot, TrEMBL and the PIR have been unified into a sin-

gle resource under the UniProt effort [Apweiler et al., 2004] since November 2003.

From the Swiss-Prot section of UniProt, users obtain a manually curated data-set of

high quality. Annotation is produced by a literature curation process and concerns

mainly protein descriptions, i.e. names and synonyms, comments, keywords and se-

quence features. Large parts of the TrEMBL section, the non-curated remainder of

UniProt, provide few, if any, of the above-mentioned value-adding annotation items.

Now we are in the age of high-throughput sequencing and the manual curation process

has not been able to cope with the avalanche of newly available sequence data and as

a consequence the proportion of well-annotated protein data is constantly shrinking.

Since this situation is unsatisfactory, various applications to generate annotation au-

tomatically have been proposed and implemented in recent years (see, for example,

[Prlic et al., 2004]; [Fleischmann et al., 1999]).

One major aspect of the UniProt effort is to establish an automated annotation

pipeline to provide users with predicted annotation, especially for otherwise little- or

non-annotated database entries. The predictive annotation rule sets generated in the

RuleBase [Biswas et al., 2001] and Spearmint [Kretschmann et al., 2001] projects are
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executed on a regular basis. The results of these approaches, which increase the infor-

mation content of UniProt considerably, are presented to the scientific community on

the project’s web pages (http://www.ebi.uniprot.org). They are shown as prescriptive

annotation on a separate layer and suggest annotation without any modifications of the

original data itself. Different colors in the HTML view make obvious which annotation

item is generated automatically and at which level of confidence they are produced.

Listing 2.1 shows the abridged UniProt protein entry ’Q8UF43’. The entry holds

some information about the protein like its ID, the species, organism classification

and the sequence. Beside this core data which is known and present for each UniProt

entry, there is a short description ”Alcohol dehydrogenase” and the keyword ”Complete

Proteome”. The latter annotation data item indicates that the protein is expressed by

an organism for which the genome has been sequenced completely. This information

does not concern the protein itself, but rather the organism from which it was extracted

and hence this keyword is not very meaningful concerning the function of the protein.

The only information about the protein function which a scientist gets from this entry

is reduced to a short description that indicates which enzyme the protein is (”Alcohol

dehydrogenase”).

Listing 2.1: Abridged UniProt protein entry. Beside the core data and a short descrip-

tion only one keyword was assigned to it.
1 ID Q8UF43

2 DE Alcohol dehydrogenase.

3 GN ADH or ATU1557 or AGR_C_2867.

4 OS Agrobacterium tumefaciens (strain C58 / ATCC 33970).

5 OC Bacteria; Proteobacteria; Alphaproteobact.; Rhizobiales;

6 OC Rhizobiaceae; Rhizobium/Agrobacterium group; Agrobact..

7 OX NCBI_TaxID=176299;

8 KW Complete proteome.

9 SQ SEQUENCE 368 AA; 39154 MW; 7BA714CF2AD464BE CRC64;

10 MFDASITIRG GTTMFTTSAY ACDDGSSPMK LATIRRRDPG ...
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Listing 2.2 illustrates the same protein entry enriched with predicted annotation.

Predicted annotation is labelled with two asterisks at the beginning of a line. Lines that

start without an asterisk belong to the original entry. The prediction system Spearmint

suggests that this enzyme is classified as EC 1.1.1.1 (see line 5). The confidence value

of this prediction lies at 90.3% (see line 6). Comments were predicted from both

RuleBase and Spearmint (see line 11 to 20), as well as keywords (see line 20 to 28).

Listing 2.2: Protein function prediction in an UniProt entry (abridged). Two asterisks at the

beginning of a line indicate that the following information was derived from one of the predic-

tion systems Spearmint (SM) or RuleBase (RB).

1 ID Q8UF43

2 DE Alcohol dehydrogenase{EI2}.

3 **DE < predicted: >

4 **DE < enzyme classification: >

5 **DE EC 1.1.1.1{SM0}

6 **PY SM0: SPM028292 (C90.3);

7 OS Agrobacterium tumefaciens(strain C58/ATCC 33970).

8 OC Bacteria; Proteobact.; Alphaproteobact.;

9 OC Rhizobiales;Rhizobiaceae;

10 OC Rhizobium/Agrobact. group; Agrobact..

11 **CC < predicted: >

12 **CC -!- CATALYTIC ACTIVITY: An alcohol + NAD(+) =

13 **CC an aldehyde or ketone +NADH{SM1}.

14 **CC -!- COFACTOR: Zinc{RB2}.

15 **CC -!- COFACTOR: Binds 2 zinc ions per subunit{SM3}.

16 **CC -!- SIMILARITY: Belongs to the zinc-containing

17 **CC alcohol dehydrogenase family{RB4,SM3}.

18 **PY SM3: SPM004003 (C91.1);

19 **PY RB2: RU000467 1.0(98.57);

20 **PY RB4: RU000468 1.0(94.87);

21 KW Complete proteome{EP6}.

22 **KW < predicted: >

23 **KW Metal-binding{RB2}

24 **KW Oxidoreductase{RB2,SM3}

25 **KW Zinc{RB2,SM3}

26 **KW NAD{SM10}

27 **PY SM3: SPM004003 (C91.1);

28 **PY RB2: RU000467 1.0(98.57);
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Both listings show abridged UniProt entries that have been extracted from the EBI

UniProt web pages where they can be viewed as complete entries. After searching for

the protein entry with the ID ”Q8UF43” and clicking on the result set, the listing 2.1

can be found on the basic UniProt view. Listing 2.2 also contains predicted annotation

which can be viewed after clicking on the extended UniProt view (not yet in the flat

file but in the HTML pages). The listings illustrate that although there is not much in-

formation provided in the original protein entry, scientists can obtain more information

about the protein once the automated annotation data has been published.

Automated Annotation - Difficulties

A cross-validation of predictive models against Swiss-Prot and various surveys of the

produced data have shown that some of the automatically generated annotation is er-

roneous. The fact that both predictive systems applied in the automated annotation

pipeline rely on protein families, domains and sequence signatures is one source of

these errors. The InterPro database [Mulder et al., 2003] provides this data by assign-

ing a protein sequence to a particular domain or family based on the presence of a

single signature hit. Whenever false positive hits are encountered, data-mining appli-

cations have to deal with erroneous input data. A cross-reference to an InterPro group

is not removed, even though the signature hit which lead to the assignment of the pro-

tein to this group is eventually found to be false positive. It is a non-trivial task to

render each and every annotation rule robust against this possibility. False positives

appear over a wide range, with some hitting to related families or remotely similar

biochemical properties, and some even occurring as entirely random events. Another

source of errors lies in the bias between training and target sets, which are the Swiss-

Prot and TrEMBL sections of UniProt, respectively. Some situations in the target set

are not represented in the training set at all and can therefore not be resolved by min-

ing algorithms using examples in the training set only. For instance, an annotation

rule that was exported in Spearmint added the keyword ”Nuclear protein” to all en-

tries in the TrEMBL section of UniProt having the InterPro domain IPR001005 (”Myb

DNA-binding domain”) and the SMART [Schultz et al., 2000] hit SM00717 (”SANT
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SWI3, ADA2, N-CoR and TFIIIB” DNA-binding domains”). The keyword is annotated

in all of the 70 non-hypothetical Swiss-Prot proteins containing the InterPro domain

and the SMART hit. In the target set however, protein Q819P5 (”Prespore specific

transcriptional activator rsfA”) fulfils the conditions of this annotation rule, despite its

belonging to the kingdom of bacteria. There were no bacterial proteins in the training

set and so the algorithm was not trained using a fully representative set of instances.

Since there is no way of knowing what proteins are going to be present in a future

TrEMBL database version, full representation of all circumstances in the training set

can never be achieved. Yet, a close analysis of the output of the annotation rule im-

mediately leads to a straightforward method for filtering out this particular erroneous

annotation. Bacteria do not possess nuclear proteins because of their lack of a nucleus.

In all cases the ”Nuclear protein” keyword annotated on bacterial proteins is wrong,

regardless of the origin of the annotation, which could be predictive systems, data im-

ports or even human curation. This can be expressed as a simple exclusion rule, which

when applied to the TrEMBL section of UniProt not only removes 66 wrong keyword

predictions produced by automated annotation, but also spots the same error in some

imports (e.g. in the bacterial protein Q93HH7).

Listing 2.3 illustrates an example of a wrong annotation. The protein entry with the

accession number Q93HH7 that is currently part of the UniProt TrEMBL section was

extracted from a bacteria (see OC line 5). Despite this information, the keyword ”Nu-

clear protein” was assigned to this protein entry (see line 8). This import is obviously

wrong and should be either removed or at least be marked as possibly wrong to avoid

the propagation of those errors to other data sources and to prevent users from process-

ing this information.
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Listing 2.3: TrEMBL entry Q93HH7 (abridged). Note that the keyword ”Nuclear Protein”

should not be in line 8, as the described protein does belong do the bacteria, which do not

possess a nucleus.

1 AC Q93HH7;

2 DE HoxX-like protein{EI1}.

3 GN SAV7365{EP3}.

4 OS Streptomyces avermitilis.

5 OC Bacteria; Actinobacteria; Actinobacteridae;

6 OC Actinomycetales;Streptomycineae; Streptomycetaceae;

7 OC Streptomyces.

8 KW Homeobox{EP5}; Nuclear protein{EP5};

9 KW Complete proteome{EP3}.

It is widely believed that human intelligence is necessary to verify any information

that is assigned to a protein and hence that only human experts are able to frame re-

liable exclusion rules. They are able to combine the biological knowledge that they

have gathered over years and can look up missing information in publications, books

or databases to decide on the correctness of an assigned annotation.

It is true, that with respect to a given single protein human experts still have advan-

tages compared to computational methods as scientist can look up any information in

a huge amount of data sources that are useful to analyze a particular protein. However,

there are other criteria that might support computational methods. Firstly, biologists do

not have the time to scan each protein entry and cross-reference them with a large num-

ber of other data sources to check if they are correctly annotated. The current TrEMBL

Release (07-Jun-2004) contains 1 062 416 entries (http://www.ebi.ac.uk/trembl/). It

would take thousands of human database curators to effectively check more than one

million entries in the TrEMBL database. Secondly, even well-educated human curators

are often not able to combine all information that is known about proteins because they

cannot survey the overwhelming amount of protein data available. In many cases, the

data simply can not be processed in the human brain. Lacking such abilities humans

often cannot spot the erroneous data.
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Aim of the master thesis

The aim of this master thesis was to develop computational methods that overcome

the mentioned difficulties by using data-mining approaches. The general idea of data-

mining is to look for hidden patterns in a large quantity of data and to find out which

patterns are connected or not connected to others, whereas a connection can either lead

to the inference or to the exclusion of a certain event. As an example of data-mining

let us look for all bacterial proteins and for all proteins with the annotated keyword

”Chloroplast” in a protein database. After assembling all protein entries containing

these patterns, a data-mining process tries to connect them and infers the absence of

the keyword ”Cholorplast” for all bacterial proteins, i.e. the event of annotating a

bacterial protein with that keyword should never happen. An exclusion rule for this

situation can be created.

The project was divided into the following three steps:

1. Algorithm development

2. Comparison of two algorithms - Simple Mapping Mechanism and Decision Trees

3. Development of a comprehensive data-mining environment

In the following chapter the principles of the two approaches are explained. After-

wards the in Java implemented system is presented, which is designed to automati-

cally mine for exclusion rules to a far deeper level than in the obvious example of the

keyword Nuclear protein in bacteria, and to apply these rules to predicted, imported

and literature-curated annotations in UniProt database entries. Finally, the results sec-

tion illustrates the benefit of Xanthippe concerning the quality of the UniProt database,

whereas the discussion will point out that Xanthippe also can contribute considerably

to improve the data quantity in the UniProt database. The results of the application

are shown alongside the automated annotation part of the UniProt entry as prescriptive

annotation (http://www.ebi.uniprot.org). The project was named ”Xanthippe” after

Socrates’ renowned shrewish wife, due to the nature of the system to scrutinize the

output of other systems and, if required, mark it as questionable.
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Chapter 3

Systems and Methods

3.1 Introduction - Choosing a suitable training-set

The task of this master thesis was to develop computational methods to detect erro-

neous protein annotation in the TrEMBL database by using data-mining approaches.

Before a mining process can be started, a database is needed on which the data-mining

training process can be performed. The intention to detect erroneous protein annota-

tion in the TrEMBL database, suggests to use the Swiss-Prot database as a reference.

Swiss-Prot currently contains over 150 000 well-annotated protein entries from which

the mining algorithm can extract data (as per Swiss-Prot Release 43.5 of 07-Jun-2004;

http://us.expasy.org/sprot/). Furthermore, the Swiss-Prot format and the TrEMBL for-

mat are basically identical and they use similar patterns for the description of the pro-

teins. Hence, it is possible to extract exclusion rules from the Swiss-Prot database

and to apply them to entries in TrEMBL. However, there is also information in the

Swiss-Prot entries that cannot be used for creating the exclusion rules, i.e. information

that is annotated in the Swiss-Prot entries, but not in the TrEMBL entries. If rules

were created with this data, they would not apply to most of the TrEMBL entries. It

is reasonable to use only those entities for the condition of the rules that are present

or pre-calculated for each protein entry in UniProt, i.e. in each Swiss-Prot and in each

TrEMBL entry. These are data such as the taxonomy of the organism, from which the
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protein was extracted, or the result of InterProScan [Zdobnov et al., 2001], which au-

tomatically classifies sequences into families and domains and detects hits to signature

databases. This kind of information is considered to be core data and is available for

each protein in UniProt.

It turns out that the presence and absence of annotation items is in many cases a

function of the distribution of core data in the protein entry. The cases where annotation

items are implied are mined by predictive systems such as RuleBase and Spearmint. It

is evident that there are also cases where annotation items are excluded by core data,

but the predictors do not use this concept.

In the introductory example, the absence of ”Nuclear protein” keyword annotation

in bacterial proteins was discussed, a fact that was deduced by using biological rea-

soning. In the following, two methods are presented which produce this and similar

exclusion rules using a statistical data-mining approach. Since April 2004 they are

integrated in the EBI automated annotation pipeline and used as a system to avoid an-

notation errors in UniProt entries. Annotation items are marked as potentially wrong

whenever the core data distribution in the entry suggests that the item should be absent.

3.2 Method 1: Simple Mapping Mechanism

The given example exploits the fact that organisms of the kingdom of bacteria do not

possess any nuclear proteins. This simple implication can be detected automatically by

examining the distributions of taxa (core data) and ”Nuclear protein” keywords (anno-

tation) in the Swiss-Prot section of UniProt. Out of 153 017 entries (as per Swiss-Prot

Release 43.5 of 07-Jun-2004; http://us.expasy.org/sprot/), there are 65 465 bacterial

and 9454 nuclear proteins. Assuming a random distribution of these data items, an

overlap would be expected, i.e. bacterial proteins with ”Nuclear protein” annotation.

The expected value is 4046 instances, while the observed overlap is 0. In a database

where these data items are statistically distributed this would be an extremely unlikely

situation with a likelihood of less than 4.6 � 10 � ������� . This value is so small that not only

can the assumption of a random distribution be discarded but there is also a good indi-
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cation that the two entities are mutually exclusive.

Reconstruction of the example:

The example was assorted after browsing the UniProt web pages (http://www.ebi.uniprot.org)

on 08-June-2004. If the same queries are posed on a later date the result sets are ex-

pected to be larger, as the Swiss-Prot database is constantly growing (see figure 3.1).

� Go to http://www.ebi.uniprot.org

� Determine the number of bacterial proteins in Swiss-Prot.

Therefore query the UniProt database as follows:

1. Select Advanced Text Search

2. Select a library: Swiss-Prot

3. Query line type: Organism Classification (OC)

4. Enter the query text: Bacteria

5. Result: 65 465 entries

� Determine the number of ”Nuclear protein” keywords.

Therefore query the UniProt database as follows:

1. Select Advanced Text Search

2. Select a library: Swiss-Prot

3. Query line type: Keywords

4. Enter the query text: Nuclear protein

5. Result: 9454 entries

� Determine the expected number of bacterial proteins in a random distributed

Swiss-Prot database with the keyword Nuclear protein.

1. Determine percentage of bacterial proteins in Swiss-Prot.

(65 465 * 100%) /153 017 = 42.8%
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Fig. 3.1: Size of the Swiss-Prot database. See http://ca.expasy.org/sprot/relnotes/relstat.html.
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2. Determine the number of bacterial proteins with the keyword Nuclear pro-

tein. 0.428*9454 = 4046

� Determine the observed number of bacterial proteins with the keyword Nuclear

protein in the Swiss-Prot database.

1. Select: Data Set Manager (top of the page)

2. Select a set A: oc bacteria

3. Select a set B: kw nuclear protein

4. Select a set operator: Icon: Intersection

5. Click Button Combine Data Sets

6. Result: The combination of data sets has resulted in no proteins being

found. Please retry.

� Estimate the likelihood of observing no proteins in a random distributed database.

Therefore compute the probability for each keyword ”Nuclear protein” (total

number: 9454) to belong to a non-bacterial protein (= 57.2% of the database) :

0.572
�������

= 2.6 � 10 ����� ���

Note: This computation is an estimation of the probability. It gives the upper

threshold. The actual probability is even lower, as the number of non-bacterial

protein to which a nuclear protein can be assigned becomes smaller after each

multiplication.

It is a simple task to design an algorithm that iterates through each taxon-keyword

combination not present in Swiss-Prot and calculates a value for the probability of

not observing an overlap. A threshold can be determined empirically, above which the

combination is exported as an exclusion rule and can be applied to data in the TrEMBL

section. At a threshold value of 1 � 10 ����� around 4000 such exclusions are generated.
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Obviously, further mappings from core data can be used to contradict an annota-

tion for the corresponding proteins. Signature hits of the protein sequence and InterPro

families or domains are particularly interesting and could be exploited to exclude an-

notation items. Yet, there are drawbacks to this approach. Proteins from a family or

having a hit to a specific signature belong to their group according to specific prop-

erties. Unlike the set of bacterial proteins that covers a wide range of functions and

hence contains a large number of distinct annotation items, the set of proteins belong-

ing to a protein family by comparison comprises a very limited range. In every protein

family or group of proteins hitting a common sequence signature, most annotations are

absent, and only a few are present. Literally millions of rules can be created and the

execution of these rules is far too inefficient in terms of application time.

Another drawback is that these exclusion rules will supposedly not detect a large

proportion of the actual annotation errors. It is hardly likely that a high-quality predic-

tion mechanism or the literature curation process produces many annotations entirely

non-specific to the protein families to which a given target protein belongs. There is

a better chance that annotation items which are specific to the family of a target pro-

tein are affected by prediction errors. Unfortunately, such errors cannot be detected

by using simple exclusions. This algorithm is designed to contradict only non-specific

combinations, i.e. those which never occur in the given protein families. A better way

of targeting them is to use a decision tree algorithm very similar to that employed in

generating the Spearmint rule set.

3.3 Method 2: Decision Tree Algorithm

While the mapping approach groups proteins globally into those having a core property

and those not having it, exclusion trees are generated from a local and comparatively

small set of training entities (about 50 proteins). The training sets are chosen to contain

proteins that are reasonably similar to each other, for instance all Swiss-Prot entries be-

longing to a given InterPro family or domain. Because of the similarity between the

proteins, the annotation in such groups is usually limited to a fairly small number of an-
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notation items. Most errors will affect these items rather than those not occurring inside

this group. To find a contradictor to prevent such errors, a decision tree for each an-

notation that occurs in a given training set is produced using the C4.5 algorithm. C4.5

is an implementation of a decision tree learning algorithm called ID3 [Quinlan, 1993].

It produces a tree of classificatory decisions with respect to a previously chosen target

classification (e.g. learns from all proteins belonging to IPR000001). The binary de-

cision tree which is produced consists of nodes and leaves. The nodes represent the

conditions (e.g. IPR000001) of an exclusion rule whereas the leaves hold annotation

data items (e.g. keyword Aids). The leaves of the trees are examined to find the neg-

ative instances, i.e. those that do not have a particular annotation, and rules are then

derived, which describe the absence of the annotation. The set of all generated absence

rules eventually serves as a contradictive system.

The following example illustrates the exclusion tree approach. Mining for the ”Mi-

tochondrion” keyword in InterPro domain IPR009056 (”Cytochrome c”) produces the

decision tree shown in figure 3.2.

Fig. 3.2: Example Decision Tree.

The tree is entirely generated on a statistical basis but it reflects some basic bio-

logical facts. In any case the prediction of the keyword is excluded from the king-

dom of bacteria, who do not have mitochondria. More interesting for an exclusion

rule generator are those proteins that neither hit to PRINTS [Attwood et al., 2003]

PR00604 (”Cytochrome c, class IA/ IB”) nor belong to InterPro family IPR002326

(”Cytochrome c1”). Both families are found in mitochondria, photosynthetic bacte-

ria and other prokaryotes. The remainder of the InterPro domain IPR009056 (”Cy-
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tochrome c”), according to the decision tree, are not localized in the mitochondria.

185 instances in Swiss-Prot belong to InterPro IPR009056 and do not hit PRINTS

PR00604 or InterPro IPR002326 (last node with blue background in figure 3.2) and

none of them has the ”Mitochondrion” annotation. For there to be a ”Mitochondrion”

keyword predicted in this group, the protein would have to have at least one of the hits

PR00604 or IPR002326; otherwise it will be contradicted by Xanthippe.

For the Swiss-Prot protein YIPP DROME (”Yippee protein”) from Drosophila

melanogaster, the Spearmint system predicts a ”Mitochondrion” keyword. It uses a

decision tree generated from training proteins in IPR000345 (”Cytochrome c heme-

binding site”). This protein belongs to IPR009056 but hits neither PR00604 nor

IPR002326, and hence, the keyword ”Mitochondrion” is not annotated in the origi-

nal entry. Xanthippe exclusion trees detect this error made by Spearmint and mark it

as possibly erroneous.
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Chapter 4

Software Architecture

4.1 Introduction

The previous chapter describes how a simple mapping mechanism and a decision tree

algorithm could be used to create exclusion rules that aim to detect erroneous protein

data. After a preliminary implementation of these two methods, it was soon found that

both are able to detect a significant number of annotation errors.

Due to the sound results of this test application, it was clear that the algorithms have

to be integrated in the automated annotation pipeline, so that the prediction systems

RuleBase and Spearmint can benefit from the Xanthippe exclusion rules.

However, with the decision to integrate Xanthippe into the automated annotation

pipeline, the requirements of the application changed. Integration into the pipeline re-

quires that Xanthippe performs a production run every two weeks to establish the ex-

clusion rules, which can then be applied to the actual protein entries every two weeks,

i.e. whenever a new UniProt release is launched. In addition, there is a need to continue

with improvements of Xanthippe in experimental runs to find optimal parameter set-

tings, to test a new mining algorithm or to check the results based on different training-

sets. A re-implementation of the test version was advisable, which served the purpose

to try out the general performance of the algorithms, but which was not designed to

integrate both production and experimental runs. The software model suggested after
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the decision to integrate Xanthippe in the automated annotation pipeline is introduced

in the next section.

4.2 Model

A software model for the data-mining environment was designed that allows both pro-

duction and experimental runs to be performed within the same Xanthippe application.

Figure 4.1 shows the general principle of this model.

Fig. 4.1: Waterfall model demonstrating the modularity of the application. In this example,

the application consists of five modules with different tasks. The notes in brackets give the task

of the corresponding module.

The structure is similar to a waterfall model, which is known to proceed linearly

through the phases of a software development process, or in our case through different

modules of the Xanthippe application. The application is divided into several sub-

units, which build modules with defined tasks. Example modules include composing

of the training-set, tree generating or rule generating. Detailed information about each

module is given in the implementation section and in the appendix. Each of the compo-

nents is regarded as a mandatory step in the program flow. The modules are executed
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in a certain order, i.e. some modules have to be processed before others. For instance,

the step in which the training-set is loaded is always executed before rule generation.

Even though the modules have a defined task, several implementations of a module

can exist, as there might be different ways of fulfilling that task. Module 1 in figure 4.1

can obtain the Entry Set either from the local disk or from an external database. These

are two different ways of executing the task that require two different implementations

of module 1. The software model is designed to allow an easy exchange of the different

module implementations. Before running the application, the user can decide which

implementation of the training-set loading module is required for a particular mining

process. Defined interfaces have to be implemented to make sure that the subsequent

module always matches the previous one, regardless of which implementation is used

in the mining process. For example, an interface defines that module 1 has a method

that returns the protein Entry Set and that module 2 always provides a method that

takes the protein Entry Set as a parameter. Hence it is always guaranteed that module

1 can transfer its output to module 2.

It is also possible to return to a previous step after the execution of a given step.

This may be necessary if a chosen module implementation does not lead to the desired

results. If Xanthippe notices at run-time, that the training-set does not yield enough

information to allow data-mining, the application can return to the first step and load

another training-set. Thus, the program can be refined during the execution of a run.

Figure 4.2 illustrates the concept of returning to a previous step and switching the

module implementation.



Xanthippe 4 Software Architecture 27

Fig. 4.2: Waterfall model that demonstrates the exchangeability of the application.

After executing module 3 (tree generator) the application returns to module 1 to switch

the entry set and to start again with the data-mining process.
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4.3 Benefits of the model

The software architecture, which is similar to a waterfall model, offers the following

benefits to Xanthippe.

4.3.1 Extensibility

The Xanthippe application is easy to extend and users can upgrade the program ac-

cording to their needs. This feature arises from the modularity of the application. An

abstract class can be used to predetermine the behaviour of each of the encapsulated

modules.

Two different possibilities are available to extend the application. Firstly, existing

module implementations can be extended as long as the guidelines of the abstract class

are followed and thus functionality can be added. Secondly, custom implementations

of the modules can be written, that can either be exchanged with default implementa-

tions or inserted between existing steps.

For instance, it is reasonable to remove redundancy in the set of generated rules

as it can take hours to apply all of the rules and in addition it is unnecessary to ap-

ply the same rule several times. One possibility to integrate this functionality in the

data-mining routine is to assign this task to module 4 (Figure 4.1). Also, a separate

module could be inserted between modules 4 and 5, which is responsible for removing

redundancies before PMML generation starts. PMML generation is usually the last

step of the data-mining application. PMML stands for Predictive Model Markup Lan-

guage. The exclusion rules are translated into this language which is understood by the

database, so that the rules can finally be applied.

4.3.2 Flexibility

Another benefit of the new software model is its great flexibility, arising from the

configurability of the program and again from its modularity.

The module implementations and parameter settings with which Xanthippe per-
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forms the run can be specified in a configuration file. The program requests the values

of the parameters during the run and thus the implementing classes of the modules are

plugged into the data-mining routine according to the specification in the configura-

tion file. This leads to a flexible application where the user can choose between several

provided or custom module implementations according to the users needs, and where

parameters are easy to set. The program flow can be easily changed by simply choosing

different module implementations and adapting the configuration file. Another advan-

tage of a configuration file is that the user is aware of all important parameters that

influence the program. It allows the user to experiment by changing these parameters

in only one file rather than searching and adapting them in the program code.

A short example of a configuration file is given in listing 4.1 in which two different

items are specified. Firstly, the mining targets are defined. In this example the mining

process would search for all keywords starting with letters A (starting letter specified

in line 2), B, C, D or H (ending letter in line 2) except for the keyword ”Albinism”

(line 3). Next, preprocessor parameters are defined. A module implementation to be

plugged into the data-mining routine is defined on line 5, followed by parameters for

the preprocessing method on line 6. It is mandatory to specify an implementing class

for each module (not shown in this example); the advantage of this is that by config-

uring all important parameters and modules the user always knows how the program

works.

Listing 4.1: Short Example configuration file
1 # Mining Targets

2 keywordInclude = A, H

3 keywordExclude = Albinism, Albinism

4

5 # Preprocessing Module Specification

6 preprocessor = uk.ac.ebi.seqdbg.datamining.preprocessing.PreProcessor

7 preprocessorParameters = removeFragments, removeHypotheticals

Splitting the program into modules means that, if new ideas are tested, only the

corresponding modules have to be re-implemented whereas the remaining program



Xanthippe 4 Software Architecture 30

part is not affected at all. The modules can be arbitrarily exchanged giving the user

flexibility in choosing which modules to use. The user can choose between several

module implementations and determine which of them he wants to use for a run. In

a later run he can swap module implementations via configuration file. For instance,

several implementations of the module that loads the training-set are possible. For one

run the implementation of module 1 can be used that loads the trainings-set from the

hard disk and for a second run training sets can be loaded from an external database.

4.3.3 Cross-validation Option

The software model allows cross-validation to be performed. The rules of a produc-

tion run are applied to the whole TrEMBL database and are tested every two weeks,

i.e. when the production run of the automated annotation system is performed. It is not

advisable to apply the rules of an experimental run in which new approaches or param-

eter settings are tested to the whole TrEMBL database. Firstly there is a need to check

the rules more often than every two weeks and secondly an application of the testing

rules to the whole database would take too long. Although only a full application to

the whole TrEMBL database provides exact results about the efficiency of the rules,

an application to a small target set that is similar to the training set is usually sufficient

to get a rough idea of the quality of the rules. It is more likely that a rule is triggered

if it is applied to a protein entry that belongs to the same family as the proteins which

belong to the training-set because the protein already fulfils some preconditions of the

rule. For example, if all proteins in the training-set were extracted from a bacterium, it

is reasonable to apply the generated rules only to bacterial proteins. Instead of apply-

ing the rules to the whole TrEMBL database, a small target-set can be used on which

a cross-validation of the created rules is performed.

A cross-validation can easily be implemented and plugged into the proposed soft-

ware model. A new module can be implemented or an existing module can be ex-

changed in which the entry-set is separated into a training and a target-set. For in-

stance, the entry set in the module ”Get Entry-Set” can be split into two sets. E.g. 90%

of the entry-set build the training set and are used to create exclusion rules whereas the
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target set consists of the remaining 10% of the entry-set on which the rules are applied

for testing reasons.

These two sets can be used for cross-validation in which the quality of the rules can

be examined. Particular investigations on some rules or special annotation errors can be

performed without starting the whole production run, but rather by applying the rules

to the small target-set. If several runs are performed with different parameter settings,

Xanthippe will create a varying set of exclusion rules. Each of these sets will probably

detect different errors or a distinct amount of errors if their rules are applied to the

target set, because they were created according to varying conditions. One can check

which of the sets detects most errors, and one can identify those parameter settings for

which the application creates the best rules.

4.3.4 Production run vs. Experimental run

The software model is designed in such a way, that both production runs and experi-

mental runs can be executed with the same application. Production runs are performed

every two weeks in order to establish those rules that are applied to the current UniProt

release. The results of the production run can be viewed on the UniProt pages. The

experimental runs aim to test new approaches or new parameter settings in order to

improve the system. Their results are not published, but only studied internally. It

is a challenging task to integrate both types of runs in one software system: frequent

implementation changes due to experiments require a lot of effort and can put the pro-

duction run at risk. For example, the current mining process is optimized for the C4.5

decision tree algorithm. It uses a lot of classes and methods from the WEKA pack-

age (data-mining software written in Java [Witten et al.,2000] for tree operations, e.g.

for composing the input format required by decision tree algorithm, for construction

of the tree itself or for post-processing the tree. These tree operations are embedded

in several classes of the Xanthippe application. Consequently modifications of many

classes would be necessary if the performance of a different tree algorithm with a dif-

ferent data-mining software, e.g. CART [Breiman et al., 1984], were to be checked. It

cannot be guaranteed that any changes are successfully implemented and tested within
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two weeks and thus there is a danger that the program can not be executed for the pro-

duction run, if it is not possible to switch back to the old implementation. The software

model allows production runs and experiments to be performed with the same applica-

tion without compromising the production run. Two configuration files are provided,

one for experimental runs and one for production runs. Those modules and parameter

settings which are stable and already demonstrated to perform well can be specified in

the configuration file for the production run, whereas the experimental configuration

file serves as the playground in which arbitrary module implementations and param-

eter settings can be configured. The suitable configuration is passed to the software

application before execution of the program. Reconstructing the program flow of the

production run every two weeks is not a problem, because the user only has to swap

the configuration files.

4.3.5 Common Data Mining Environment

Even though Xanthippe and Spearmint have similar approaches they were originally

developed independently. It is reasonable to combine the two systems to avoid du-

plicate maintenance effort, as many steps in the program flow of the two systems are

similar or even identical.

For example, the fact that all proteins with the status ’hypothetical’ should be re-

moved from the training-set applies to both systems, since hypothetical proteins are

classified as insufficiently annotated and are inappropriate for any rule finding pro-

cess. The mining process itself is another example of the similarity of Spearmint and

Xanthippe. Both systems scan a training-set of well-annotated Swiss-Prot proteins and

return a complete decision tree. Apart from minor differences in parameter settings

the same general flow is processed. In both cases the returned tree provides complete

information for creating exclusion or annotation rules. Hence, it is usually unnecessary

to calculate a separate decision tree for each of the systems.

The software model as described here provides the foundation for a common data-

mining environment, in which Spearmint and Xanthippe can run in parallel in order to

avoid duplicate program code. The modules and their assigned task in figure 4.1 apply
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equally to the generation of exclusion rules as well as to the generation of annotation

rules. Some module implementations can be used for both systems, such as loading

the entry set. Others are adapted to the corresponding system; for example, the imple-

mentation of the module that generates rules is different for Spearmint and Xanthippe.

Again, the configuration file specifies one system and associated modules to execute.

It is also possible to specify both systems in the configuration file. If the systems run

concurrently they can perform their task more efficiently, because some program parts

only have to be calculated once for both programs, such as the generation of decision

trees.

4.4 Implementation

The waterfall model described in the previous section introduced the general concept

of the software model on which the data-mining application is based. This section

describes the implementation details of the model. There is a need to refine the model

introduced in the previous section before it is implemented in order to encapsulate ad-

ditional program parts. A final software model proposes the implementation of eleven

modules which are described below.

1. Loading of the Entry Set

A set of well-annotated proteins is needed at the beginning of a run, as the data-

mining process needs to scan all these proteins in order to extract useful in-

formation that will be used to create either annotation or exclusion rules. The

”EntrySet” (B.1) is the datastructure that holds this set of well-annotated pro-

teins. As data-mining is not possible without these proteins each program cycle

starts by loading an ”EntrySet” on which the data-mining can be driven. If there

are several ”EntrySets” that are supposed to be used for the mining process the

application will be processed in a recursive manner. For example, a loader class

selects the first ”EntrySet” and when the mining process is finished, a different

mining process is started with the next set.
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The loading step acts as the data-mining application’s entry point and is therefore

mandatory in order to perform the data-mining. A Java class is used to compose,

manage and pass a set of training-proteins to the application. As there are differ-

ing ways of performing the afore mentionend tasks, several classes are possible

to implements the tasks. A common abstract class defines the core operations of

this mining-step, which has to be implemented from all other classes assigned

to the package the package ”uk.ac.ebi.seqdbg.datamining.loading”. One loading

class has to be specified in the configuration file which is passed to the mining

application. An error message will turn up, if no loading step is configured. Fur-

ther information on the implemented classes that belong to this module are given

in the appendix C.1

2. Pre-Processing

Before the actual data-mining can begin a pre-processor has to prepare the loaded

training-set. Protein entries that are not suitable for the mining process should

be removed from the training-set and others may need to be modified to make

them appropriate.

For example, fragments should be removed. The signature hits that come with

a fragment are found after aligning the fragment to signature databases like

PRINTS or Prosite. The fragment is a part of a long sequence, and presum-

ably more signature hits would be found if the whole sequence was aligned to

the databases. Thus a lot of information is missing if data-mining is performed

on fragments,because additional signatures of their complete sequences are dis-

regarded. Hence there would be a risk that non-specific rules were created. A

common abstract class defines the core operations of this mining-step, which

has to be implemented from all other classes assigned to this package. One class

performing the pre-processing step has to be specified in the configuration file

which is passed to the mining application. An error message will turn up, if no

pre-processing step is configured. The implementation details of the classes of

the package ”datamining.preprocessing” are described in appendix C.2
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3. Training-Set Splitting

For cross-validation reasons, the splitting step divides the training-set into two

smaller ones. The first set can serve as a training-set, i.e. rules are created

after mining this set. The second set holds those proteins on which the rules are

applied to check their performance. We expect, that none of the exclusion rules

should trigger if applied to the target proteins. However, should they trigger it

suggests that the rule finding process was not thourough. Appendix C.3 gives

information about the classes that belong to this module.

4. Arff-Generating

The protein data in the training-set has to be available in a suitable format that

allows the application to perform data-mining operations on it’s member pro-

teins. The classes in the package Arff convert the data into an appropriate format.

Firstly they must retrieve the data from the database, via a seperate package, then

the data can be converted into the ARFF format (described below). The ARFF

file generation is divided into two steps in this data-mining application. Firstly,

the ARFF file is prepared, i.e. the signatures of the training-proteins are col-

lected and written in an incomplete file. Secondly, this prepared ARFF file is

completed in adding an annotation data item,whereas the application requires

an own ARFF file for each annotation data item. The way to prepare or rather

to generate this ARFF is user-definable and managed in the Package ’Arff’, its

classes are described in C.4.

An ARFF (Attribute-Relation File Format) file is an ASCII text file that de-

scribes a list of instances sharing a set of attributes. ARFF files were developed

by the Machine Learning Project at the Department of Computer Science of

The University of Waikato for use with the Weka machine learning software

[Witten et al.,2000]. The Weka software is open source data-mining software

written in Java.

The Xanthippe data-mining application uses an ARFF file to store informa-

tion about the proteins which belong to the training-set. An example is given
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Attributes � SM00020 PS50070 SM00473 IPR000001 Polymorphism

Instances
�

HGFA_HUMAN + + - + -

HGFA_MOUSE + + - + -

HGFL_HUMAN + + + + +

HGFL_MOUSE + + + + -

Table 4.1: Example ARFF-File

in table 4.1. The training-set consists of four haemoglobin proteins which all

belong to the InterPro cluster IPR000001. A class from the WEKA package is

used to find out which attributes are shared from these proteins and creates the

shown table. In each row the table contains a protein instance and in each col-

umn the protein attributes for the instances are indicated with ”+” and ”-” signs.

For instance, the protein HGFL HUMAN does belong to the protein families

SM00020, PS50070, SM00473, IPR000001 and it has the keyword ”Polymor-

phism” annotated.

The ARFF file contains all the information used for the mining process. Once it

is generated it is passed to the next module that is responsible for the tree gener-

ation.

5. Data Mining

The actual data-mining takes place in the mining step. An Arff object, which

holds the information extracted from the training-set is first passed into the rou-

tine. This object is then searched by a mining algorithm, which ultimatly returns

a decision tree, that suggests an annotation data item for a protein entry, if it

fulfils certain conditions.

(See appendix C.5 for classes in the datamining package).

6. Post-Processing

The classes in the post-processing packages aim to adapt the trees which were
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returned by the mining step. Differing decision tree algorithms, when used in the

mining step will return different trees. For example, if the DefaultDataMiner (see

C.5) was used, the decision tree will have the format that is defined in the Weka

package (open source data-mining software). This tree might not be completely

appropriate for the following program flow, but still can be readily adapted in the

post-processing step. (See C.6 for implementation details).

7. Selecting

By the time the mining process reaches the selection step, a lot of decision trees

that hold either exclusion or annotation rules, are available. So far no tree has

been rejected, regardless of which rules it consists of. Some of the trees are not

well suited for the given input proteins. For example, a rule may have been added

to a tree even though there were some proteins in the training-set that behaved

exceptionally to it. However, this mining step aims to exclude all trees that are

found to be not sufficiently reliable enough to be applied to the target protein

set.(See C.7 for implementation details).

8. Crossvalidation

The cross-validation step is the last component of the actual mining cycle. In

this step it is possible to check the performance of the annotation rules directly

after they have been created, filtered but before they have been applied. If the

application of the rules deliver good test results, the mining process stops at

this place. Otherwise, the mining process can be redefined and the parameter

settings be changed so that eventually the best possible rules are extracted from

the training-set. (See C.8 for implementation details).

9. Exporting

The mining process itself is finished when the program arrives at the exporting

step. The ”Exporting” module intends to save the final rules that were generated

in the mining process. (See C.9 for implementation details).
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10. RedundancyRemover*

Some of the rules that were generated might be redundant. An additional mod-

ule ”Redundancy Remover” was implemented that identifies and removes these

redundancies. This step finally shortens the runtime of the application process

of the Xanthippe rules, as less rules need to be applied.

11. PMML Generating*

The rules have to be converted to a certain format, the PMML(Predictive Model

Markup Language). This is a XML based mark up language to describe sta-

tistical and data-mining models [Grossman et al., 1999]. The PMML allows to

apply the rules on UniProt entries. This module intends to generate these PMML

files.

All presented modules are part of the data-mining application and they are mentio-

nend in the order in which they should be executed. Some of them are exchangeable,

i.e. they can be adapted according to different problems. There are also fixed compo-

nents which should not be exchanged. Class implementations are provided for them,

which are recommended to be used without any changes. Sometimes these fixed com-

ponents concern complete modules and in other cases it concerns data structures that

belong either to an exchangable or fixed module. The fixed modules are indicated in

the above mentioned list with an asterisk at the end (modules 10 and 11). Both types

of components are introduced in the following. Firstly, the implementation of the fixed

components is addressed.

4.4.1 Fixed Components

While some program parts have to be adapted to special conditions from run to run,

others are fixed. The implementations of fixed parts are not supposed to be changed

or adapted by the user. They are provided as completed modules (see modules 10 and

11) because they are always needed in the same form, regardless of how the remaining

application is implemented.
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Some data structures in the exchangeable modules are also fixed, as they are es-

sential to the application. Essential parts of the program are necessary to fulfil the

fundamental task of the application, which is to perform data-mining on a set of pro-

teins and to return a set of annotation rules. A set of proteins is an example for an

essential program part, as it is needed several times in each mining process. For in-

stance, it is composed in module 1, pre-processed in module 2 and split in module 3. It

is reasonable to have a data structure for the set of proteins that can be used whenever

operations on this set are performed. After analyzing the behaviour of the training-set

a data structure ’EntrySet’ was implemented. It contains fields and access methods

useful for working with the training-set. There are operations for adding an entry to

the training-set or operations that can be used to save information concerning the origin

of the training set (see Java-doc in the attached CD-ROM).

An example for a fixed module is PMML generation (module 11). The PMML file

holds the exclusion rules which are translated into a markup language, and is used for

the application of the rules on the UniProt database. The PMML file has a specified

structure that should be followed in order to guarantee an error-free application. The

module which is responsible for the PMML generating is therefore fixed and should

not be changed. It requests a flatfile with the generated rules and translates it into

PMML.

Additional fixed data structures have been implemented, the most important ones

are present in the appendix, where also further implementation details can be viewed

(see attached CD-ROM for full implementation).

4.4.2 Exchangeable Components

Even though some components are unchangeable, there are sections which can be

adapted to special requirements (module 1 - module 9). Separate class implementations

for each of those modules are reasonable, because they simplify the module exchange

process. A favoured class implementation is specified in the configuration file, which

is plugged into the data-mining routine when the program starts.

An abstract class for each of the modules is defined, that guarantees the integration
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of the implementations in the program flow. This abstract class defines an interface

that has to be followed if a concrete sub-class is implemented. The abstract handler

classes are assigned to several packages, which also provide one or more implement-

ing subclasses of the corresponding superclass. A class that implements the module’s

task has to extend the abstract class and it has to implement its provided method dec-

larations. The implementation details are up to the class, but it has to follow the given

guidelines.

For instance there is a package that is responsible for the loading of the training-

set (module 1). An abstract class ”TrainingSetLoader” provides methods that have to

be implemented from subclasses. Two subclasses of the ”TrainingSetLoader” were

implemented in the final Xanthippe application. One subclass loads the training-set

from the local disk (”LocalLoader”) and another subclass loads it from an external

database (”InterProLoader”). The module implementation that is supposed to be used

in the run, is specified in the configuration file. If a different implementation of a

module is required for the next run, a different sub-class is specified. The task and the

implementation details of the exchangeable components are described in the appendix

(see attached CD-ROM for full implementation).
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Chapter 5

Results

Since two inherently different sets of exclusion rules were generated, the results are

presented separately to allow a thorough analysis of the individual systems.

Organism to Keyword Exclusions

This system is rather stable in its output, it being unlikely that in the future organisms

will be found that contradict the known fundamental properties of their taxonomical

backgrounds. Since each data mining application on reasonably sized data sets pro-

duces false positive predictions, we chose to present the once exported exclusion rules

to a biological expert who manually picked out those of biological value. One arte-

fact that could be detected in this procedure was the apparent absence of ATP-binding

proteins in a range of venomous snakes. The statistical approach produced a value far

below the threshold and exported an exclusion between the taxonomy of these snakes

and the ”ATP-binding” keyword. In reality this exclusion does not denote any ex-

ceptional metabolic properties of these animals, but more the high level of scientific

interest in protein samples of their venom. None of these bind ATP, while the rest of

the proteome is not represented in the Swiss-Prot section of UniProt.

In the following the results of applying 700 curated rules are discussed. They were

applied only when there was no example of that particular combination in Swiss-Prot.

They were considered to be biological facts, so their confidence value was set to 100%.
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Fig. 5.1: Number of cases found in the TrEMBL section of UniProt, which were con-

tradicted by Xanthippe exclusions from organism to keyword (white). Note, that the

individual numbers do not add up, since overlaps occur. The blue part shows the error

rate, i.e. how many contradictions where found compared to the amount of annotations

provided by the individual sections.

A cross-validation to Swiss-Prot is therefore unnecessary and only their performance

in the TrEMBL section of UniProt and on automated annotation is given in figure 5.1.

Spearmint was found to produce the largest amount of annotation errors in total

numbers, while the original annotation on the entries, usually imports from EMBL

[Kulikova et al., 2004], had the highest error rate.

Exclusion Trees

This method is highly sensitive to minor changes in the distribution of core data in

the training set, and hence exclusion trees are exported with every release of a new

version of Swiss-Prot. In general the new exports differ from former results. They

frequently query for related signature hits or on different levels in the taxonomy tree,

but if applied they usually produce the same contradictions. Therefore, a curation step

as in the first method is not feasible and the artefacts produced by this method have to

be accepted and investigated.

Exclusion trees were generated for three inherently different annotation items: key-
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Fig. 5.2: Performance of Xanthippe exclusion trees on keyword predictions from Rule-

Base and Spearmint.

words, protein names and comments. Keywords consist of a controlled vocabulary of

approximately 850 distinct words that are highly accessible to data mining algorithms.

Protein names are less controlled and comments can be used for entirely free text an-

notation. Closer examination reveals that large parts of the latter annotation items in

fact also consist of controlled vocabulary. They are kept consistent in the Swiss-Prot

section of UniProt, occur in multiple entries and can therefore be picked by algorithms

working on a statistical basis.

The results are given individually for rules from Spearmint and RuleBase to show

that the method performs well on predictive methods from entirely different back-

grounds. RuleBase is an expert-curated annotation system, where the rules are created

on a basis of biological reason and only partly on statistical considerations. Spearmint

ignores the biology component of the problem field, is founded on data mining algo-

rithms only, and is related in its approach to the exclusion rule generator.

The cross-validations to the Swiss-Prot section of UniProt were sampled as follows.

Whenever annotation rules from the individual sources were applied on a Swiss-Prot

protein and a predicted annotation was not present in the entry itself, it was considered

to be erroneous. Whenever this prediction was contradicted by the Xanthippe system,
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Fig. 5.3: Performance of Xanthippe exclusion trees on comment and protein name

predictions from RuleBase and Spearmint.

it was counted as detected (true positive); if it was not contradicted, it was counted

as missed (false negative). There are cases where correct annotation was contradicted

(false positive), but the largest part consists of correct annotations that were not con-

tradicted (true negative).

Figure 5.2 shows the cross-validation of keyword predictions to Swiss-Prot. For

Spearmint, approximately two thirds of annotation errors are detected (blue part) for

the price of around two per cent of wrongly contradicted annotations (yellow part). If

this validation is true for the target set, it suggests that if Spearmint predictions were

applied to the TrEMBL section of UniProt physically rather than by using the current

prescriptive annotation system, the quality of keyword predictions could be increased

from around 98.5% to ca. 99.5%. For RuleBase still about 40% of the annotation

errors were found, improving the overall precision from 99.0% to 99.4%. However, the

extended HTML view of a UniProt entry contains notes indicating which annotation

is contradicted. Currently neither predicted nor curated annotation is removed from a

UniProt entry physically.

Figure 5.3 shows the Xanthippe performance on protein names and comments.

For Spearmint, the protein name precision of the predictions could be increased from

96.9% to nearly 99%, all other items showed a poorer performance. After all, between
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20% and 30% of the annotation errors could still be filtered on this data, but obviously

these are the best targets for further improvements.



Xanthippe 6 Discussion 46

Chapter 6

Discussion

The presented system for filtering erroneous annotation from protein entries in UniProt,

particularly the automatically produced data, proved useful for keyword annotation.

The filtering uses two distinct mechanisms, of which the simple mapping approach

was approved to be taken into the automated annotation production pipeline. The ex-

clusion tree approach turned out to be promising, but the performance of comment and

protein name contradictions needs further improvement.

Improvements to the exclusion tree approach

Taking sub-string / super-string situations into account is expected to enhance the sys-

tem considerably. In the InterPro family IPR000500 (”Connexins”) for instance, all

protein names of the Swiss-Prot members are annotated as ”Gap junction [extension]

protein”, where the extension can be ”alpha-1”, ”beta-2” , etc. The RuleBase system

however predicts ”Gap junction protein” without the extension as protein name. Ob-

viously, there can be no Xanthippe rule that ever contradicts this particular annotation,

because there is no single instance in the training set where the extension is missing.

Should there be a case where RuleBase annotates ”Gap junction protein” incorrectly,

there is nothing in the current Xanthippe system that could prevent this from happen-

ing. Furthermore, the statistics given in the above diagrams are impaired by this effect.

In the cross-validation, ”Gap junction protein” predictions on actual ”Gap junction
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[extension] protein” annotations are still considered as false positives. Mostly, sub-

string predictions are generalisations of the actual annotation and should be calculated

as true positives. The Xanthippe system needs to be extended to cover sub-strings of

protein names and comments, and hence those cases need to be included in the training

sets.

Predictors vs. Contradictors

The RuleBase system has been used since 1999 to produce automated annotation. The

performance in terms of precision is highly appreciated and the system is supported by

a team of experts. Spearmint is intended to supplement RuleBase and to increase its

coverage without compromising its level of precision.

As an automatic data mining system Spearmint has the advantage of producing

much more annotation than RuleBase. The latter however is small enough to be re-

viewed constantly by scientists, and hence the confidence in the data it produces is

high. The output quality of Spearmint can be adjusted by not applying all the exported

rules, but only those with high statistical support. Taking RuleBase as a benchmarking

system, Spearmint is set to produce the same quality level as RuleBase. The Spearmint

application, followed by a Xanthippe post-processor, can be adjusted to produce even

more predictions at a lower level of precision. If a large portion of the errors is fil-

tered out, the same overall annotation quality can be produced as in a more restrictive

Spearmint export without the Xanthippe post-processing step.

Running Spearmint at 98.5% quality reproduces 33% of keyword annotation in

Swiss-Prot [Kretschmann et al., 2001], while a 95% quality level yields 58% recall.

Provided that Xanthippe still detects two thirds of the errors produced by a Spearmint

exported at 95%, the actual precision is expected to be at around the desired 98.5%.

Additionally, the proportion of detected erroneous annotation is expected rather to

increase for a rule set produced by a comparatively low precision system. This means

that with using Xanthippe the recall of keywords can be nearly doubled without com-

promising the quality of the prediction.
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Feedback loops

If RuleBase or Spearmint predicts an annotation item on a Swiss-Prot entry, which is

not contradicted by Xanthippe but is missing in the entry, a further investigation should

be undertaken. In some cases the item might be missing in the entry and can be added,

which would improve data consistency in Swiss-Prot.

Since garbage in – garbage out effects are responsible for many annotation errors,

the signatures leading to the most obvious ones will be reported to InterPro. If required,

such hits can be set to false positive status in this database.
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Chapter 7

Conclusion

The aim of this master thesis was to develop a software system that automatically

detects erroneous protein annotation. A comprehensive data-mining environment was

developed, with which it is possible to perform this task. A CD-ROM with the program

code of the Java data-mining application is attached to this master thesis. The results

are very promising. A publication is currently in print [Wieser et al.,2004] and the

work will be presented in August at the ISMB 2004.
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Appendix A

The Involved Databases

A.1 UniProt

The UniProt Knowledgebase (UniProt) provides a central database of protein sequences.

It holds the Swiss-Prot database, the TrEMBL database and PIR (Protein Information

Resource). The Swiss-Prot and TrEMBL section of UniProt were essential parts of

this master thesis and they will be introduced in more detail below.

A.2 Swiss-Prot

The Swiss-Prot section of UniProt served as a reference database during this master

thesis and delivered the training-proteins for the data-mining. It is a well-annotated

protein sequence database established in 1986/87 by the group of Amos Bairoch first

at the Department of Medical Biochemistry of the University of Geneva and now at

the Swiss Institute of Bioinformatics (SIB) and the European Bioinformatics Institute

(EBI). It currently contains over 150 000 protein entries (as per Swiss-Prot Release

43.5 of 07-Jun-2004; http://us.expasy.org/sprot/). The annotation is added manually

by a large number of database curators with a strong biological background. Each

annotation is double-checked several times in a chain of annotation steps until it is

finally accepted by Amos Bairoch and checked into the database. In this way a very
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high quality of the data could be ensured throughout the years. Swiss-Prot is heavily

used as a source for tools and other databases to search for functional groups, protein

families or proteins whose sequences show similarities to a given sequence.

A.3 TrEMBL

The TrEMBL section of UniProt was the target database on which the rules that were

created after mining the Swiss-Prot database were applied. Before an entry is checked

into the Swiss-Prot database, it is usually stored in the TrEMBL database. The TrEMBL

database currently contains over 1 000 000 protein entries. The quality and quantity

of information assigned to a protein entry in TrEMBL varies. Some entries contain

high quality data, while the largest part of TrEMBL contains poorly annotated protein

entries, that only provide little more than the mere sequence data. A part of the annota-

tion was imported form the EMBL nucleotide sequence database while a considerably

amount of information comes from the automated annotation. The correctness of an-

notation in the TrEMBL database is not always guaranteed, as the database is rarely

checked by human experts. It was the aim of this master thesis to improve the data

quantity and in particular the data quality of the entries in the TrEMBL database with

the aid of data-mining techniques.

A.4 Structure of Swiss-Prot and TrEMBL

The information about each protein in Swiss-Prot and TrEMBL is collected in a struc-

ture called ”Entry”. Two classes of data can be distinguished in an entry: the core data

and the annotation. The core data consists of incontrovertible facts like the sequence

data, the citation information or the taxonomic data. This information is present for

each protein entry in both the Swiss-Prot and the TrEMBL database. This situation

is in contrast to the annotation, of which there is a significant amount attached to all

Swiss-Prot entries, but which is at least partly unavailable in many TrEMBL protein

entries. The annotation is a collection of conclusions made from a scientific point
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of view and is therefore contingent on the current level of research. It describes the

functions of the protein, the similarities to other proteins, or diseases associated with

deficiencies in the protein. Each sequence entry is composed of lines. Different types

of lines are used to record the various data that make up the entry. Some line types

are found in all entries, others are optional, some occur many times in a single en-

try others at most once. A complete description of all line types is maintained at

http://us.expasy.org/sprot/userman.html. The following sections briefly describe those

lines that were used in the data-mining application (descriptions are partly extracted

from the expasy web page). Firstly, those lines types are introduced that are present

for each protein entry in UniProt, i.e. Swiss-Prot and TrEMBL (”Core Data”). The

information which they hold were finally used as conditions of the exclusion rules.

Secondly, the annotation data items which Xanthippe currently aims to contradict are

mentioned (”Annotation”).

ID (Core Data)

The first line of each entry is the ID line which contains the entry name, the data class

(STANDARD = Swiss-Prot, PRELIMINARY = TrEMBL), the molecule type (PRT =

protein) and the length of the sequence which is given in the number of amino acids:

ID CYC BOVIN STANDARD; PRT; 104 AA.

OS (Core Data)

The OS (Organism Species) line specifies the organism(s) which was (were) the source

of the stored sequence.

OS Mus musculus (Mouse),

OS Rattus norvegicus (Rat), and

OS Bos taurus (Bovine).
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OC (Core Data)

The OC (Organism Classification) lines contain the taxonomic classification of the

source organism. The classification is listed top-down as nodes in a taxonomic tree in

which the most general grouping is given first.

OC Eukaryota; Metazoa; Chordata; Craniata; Vertebrata;

OC Euteleostomi;Mammalia; Eutheria; Primates; Catarrhini.

DR (Core Data)

The DR (Database cross-Reference) lines are used as pointers to information related to

entries and found in data collections other than Swiss-Prot. It holds references to Inter-

Pro [Mulder et al., 2003], Prosite [Hulo et al., 2004], SMART [Letunic et al., 2004],

TIGRFAMs [Haft et al.,2003], PIR Super family [Wu et al., 2003] ,

ProDom [Servant et al., 2002], Pfam [Bateman et al., 2004] and other families to which

the protein sequence is assigned. It turned out that the presence or the absence of ref-

erences to these databases in a protein entry frequently leads to the presence or to the

absence of certain annotation data items in this entry. Hence, the DR line is used by

the contradiction system Xanthippe to create its exclusion rules. The InterPro database

played a specific role in this master thesis and is described in more detail later in this

Appendix.

DR Pfam; PF00017; SH2; 1.



Xanthippe A The Involved Databases 54

DE (Annotation)

The DE (DEscription) lines contain general descriptive information about the sequence

stored. This information is generally sufficient to identify the protein precisely. The

description line contains three different types of information that can be predicted from

the prediction tools Spearmint and RuleBase or rather contradicted form the contradic-

tion system Xanthippe. These are the protein name, synonyms and EC-numbers. It

starts with the protein name. Synonyms and EC-numbers are indicated in brackets.

DE Annexin V (Lipocortin V) (Endonexin II) (Calphobindin I)

DE (Placental anticoagulant protein I) (PAP-I) (PP4)

DE (Vascular anticoagulant-alpha) (VAC-alpha) (Anchorin CII).

KW (Annotation)

The KW (Key Word) lines provide information that can be used to generate indices of

the sequence entries based on functional, structural, or other categories. The keywords

chosen for each entry serve as a subject reference for the sequence. There is a limited

number of keywords (about 800) out of which the database curators choose the most

fitting. A list of all currently used Swiss-Prot keywords and a definition of their usage

can be found here: http://us.expasy.org/cgi-bin/keywlist.pl.

An example of KW lines in an entry is:

KW Apoptosis; Endocytosis; Cell adhesion;

KW Coated pits; Neurone; Heparin-binding;

KW Zinc; Signal; Transmembrane; Glycoprotein;

KW Proteoglycan; Alternative splicing;

KW Alzheimer’s disease; Amyloid; 3D-structure.
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TrEMBL makes use of the same controlled list of keywords that is used in Swiss-Prot

but, as most keywords in an entry are added during the annotation process, TrEMBL

entries generally contain fewer keywords than Swiss-Prot entries.

CC (Annotation)

The CC (Comments)lines are free text comments on the entry, and are used to convey

arbitrary useful information.

CC -!- ALLERGEN: Causes an allergic reaction in human.Binds

IgE.

CC It is a partially heat-labile allergen that may cause both

CC respiratory and food-allergy symptoms in patients with the

CC bird-egg syndrome.

A.5 InterPro

InterPro [Mulder et al., 2003] is an integrated documentation resource for protein fam-

ilies, domains and sites. It combines several member databases that all hold protein

signatures. The member databases use different methods to derive the protein sig-

natures. By uniting those member databases, InterPro capitalizes on their individual

strengths, producing a powerful integrated diagnostic tool. The member databases are

Prosite, Prints, ProDom, Pfam, SMART and TIGRFAMs. Each protein belonging ei-

ther to Swiss-Prot or TrEMBL is assigned to one ore more InterPro groups. Currently

there exist about 10 000 different InterPro groups. In this master thesis the Swiss-Prot

proteins of one InterPro framed a set of training-proteins for the decision tree algo-

rithm.
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Appendix B

Detailed Information on Some

Important Fixed Classes

The data-mining application is implemented in Java and composed of a fixed part and

an adaptable part. The fixed part consists of classes which are not supposed to be

changed, configured or adapted from the user as they are fundamental parts of the

data-mining application. These fixed classes were assigned to three different packages,

which are basically introduced in the following. For further information please browse

the Java documentation which can be find on the attached CD-ROM.

B.1 Package datamining

Holds the core classes to establish the Swiss-Prot data-mining framework. It holds the

main class and several classes which model different data structures of the data-mining

application.

B.1.1 Class Miner

The main class to start the data-mining process on Swiss-Prot data. A mining process

is constructed according to the contents of a given configuration file. This process is
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started, which itself is able to trigger new data-mining sub-processes.

B.1.2 Class MiningProcess

The central process to mine for protein data. Includes all steps from data loading to

rule selection.

B.1.3 Class MiningStep

A data-mining process consists of a sequel of data-mining steps. This class handles

the common functionality of the data-mining steps, such as logging, reporting and

sub-processing. Each MiningStep can potentially create a number of sub-processes

(MiningProcesses) with an exchange of some data-mining steps. This construct is

designed to mine for items using an extended or modified approach, if the current

approach fails.

B.1.4 Class EntrySet

An EntrySet holds a set of PythiaEntries (java objects of protein entries). It is extended

by additional information, e.g. information about the source of the protein entries. The

EntrySet basically is the protein training-set for the data-mining application.

B.1.5 Class EntrySetPair

An EntrySetPair consists of a training set and a target set. The training set can be used

for the mining process itself and the target set for the application of the rules.

B.1.6 Class DataItem

Defines the general structure of data items that describe a protein. DataItems extracted

from the training-set are used in the mining process to predict the same DataItems for

other proteins. Non-abstract subclasses need to implement the methods of this class.
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B.1.7 Class CoreDataItem

The core data items are extracted from the proteins in the training set and modelled

in the class CoreDataItems. This data can be used to predict AnnotationDataItem.

Discrete values are not supported properly, currently it is only possible to mark whether

a core data item is present or absent in a certain protein entry.

B.1.8 Class AnnotationDataItem

An annotation item represents an entity in a Swiss-Prot database entry that can actually

be predicted using CoreDataItems. AnnotationDataItems come as simple type-name

pairs.

B.1.9 Class MiningTargets

This class is used to define, which AnnotationDataItems are included and excluded

from the mining process. It consists of an inclusion- and exclusion-list. All the ele-

ments in the inclusion list are mined for, except the ones defined in the exclusion list.

There is no consequence, if AnnoationDataItems are contained in the exclusion list but

not present in the inclusion list. In this case the AnnotationDataItem is not included in

the mining process. Single annotation data items can easily be excluded, if there is an

exclusion and a inclusion list. For example, one can specify to include all keywords

(inclusion list) except the keyword ”Hypothetical” (exclusion list). The application

will mine for all (about 800) keywords except the ”Hypothetical”. The same could be

reached in manually adding all keywords which the application is supposed to mine for

to the inclusion list , which costs much more effort than simply adding one keyword to

an exclusion list.

B.1.10 Interface Report

This interface should be implemented by all classes reporting on the mining process.
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B.2 Package datamining.util

Amongst classes and data structures that concern the whole data-mining application,

this packages also contains some classes that are not directly part of the data-mining,

but are rather used for preparing the output from the data-mining so that the rules

finally can be applied. There are also help tools in the package that are useful for

preparing the training-set for the actual mining process. The most important classes

are shortly introduced in the following.

B.2.1 InterPro2EntrySet

This class is independent from the mining process and it has its own main method. It is

used to get Swiss-Prot entries from the database and to store them as serialized objects

in local directories. All entries in the given InterPro groups are stored as EntrySets B.1

in the given directories from which they can be fetched during the mining process.

B.2.2 Class Arff

This class forms a data structure for the ARFF (Attribute-Relation File Format) and is

used by other packages during the mining process. The Arff class wraps all WEKA

classes (open source data-mining software) in an application specific framework. It

holds instances, attributes, annotation data items and combines them.

B.2.3 SpearmintExporter and XanthippeExporter

These two classes scan a flat file which contains a list of prediction and contradiction

rules. The SpearmintExporter picks out the prediction rules while the XanthippeEx-

porter collects all contradiction rules. They remove all rules that are below a certain

confidence value and also rules that do not have a required number of conditions. The

result is written into a new flat file. Both classes have an own main routine and are

usually used after the data-mining process.
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B.2.4 RedundancyRemover

The RedundancyRemover can be used as a post-processing step after the mining pro-

cess. It is independent from the other classes of the mining application and has its own

main routine. The RedundancyRemover scans a given flat file holding a list of rules,

removes all duplicated rules and also subrules of more general ones. For instance, a

rule that says that no Proteobacteria should have the keyword Chloroplast is removed

if there is an additional rule that says that no Bacteria should have the keyword Chloro-

plast. If an entry applies to the first rule, it will also apply to the second rule, but not

necessarily the other way round. Thus, it is enough to only apply the second rule.

B.2.5 PMMLGenerator

Generates a PMML document (Predictive Model Markup Language) containing con-

tradiction or prediction rules. It translates a given list of InterProTrees B.3 into PMML.

Each InterProTree in the given list, acts as a new rule. The accession-number of each

rule correlates with the root node of an InterProTree, which is an InterPro-group.

B.2.6 DecisionTreeBuilder

Postprocessing step after the actual mining process.

B.3 Package datamining.tree

Holds all classes concerning the decision tree. It holds a class that models the decision

tree itself and different classes that can be used to handle different parts of the tree, for

example the nodes or branches.

B.3.1 DecisionTree

Represents a decision tree. A decision tree consists of nodes,which represent the condi-

tions of a prediction or contradiction rule. A decision tree is created for one annotation
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data item.

B.3.2 InterProTree

An InterProTree is an extension of the DecisionTree. The root node of an InterProTree

is always an InterPro group. Several annotation data items can be attached to the

same InterProTree. An InterProTree can hold prediction or contradiction rules, but not

both. An InterProTree has a type which specifies the type of rules which it holds. A

confidence value is assigned to each InterProTree.

Information about additional classes assigned to each of the three packages can be

browsed in the Java-doc.
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Appendix C

Detailed Information on the

Exchangeable Components

C.1 Package: datamining.loading

This package contains an abstract class defining the loading step of the data-mining

application and its implementing classes.

ABSTRACT CLASS:

TrainingSetLoader

The abstract class ”TrainingSetLoader” needs to be extended by all classes that load

the training-sets used for the data-mining. Subclasses will allow to experiment with

training-set variations.

public abstract boolean has-

NextEntrySet()

This method checks if there is an EntrySet

(see B.1) with which a new program cycle

can be started.
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public abstract EntrySet get-

NextEntrySet()

The method getNextEntrySet() delivers

an EntrySet (see B.1) at the beginning of

each data-mining cycle.

IMPLEMENTING CLASSES:

InterProLoader

The InterProLoader requests a warehouse to get protein entries belonging to a specified

InterPro group. A new EntrySet (see B.1) for each InterPro group is created and the

InterProLoader passes the EntrySet objects consecutively when the getNextEntrySet()

method is called to a mining process.

LocalLoader

The LocalLoader provides access to EntrySets stored as serialized objects locally in

possibly various directories on the hard disk. This class will gather all *.obj files in the

given directories, try to read them in as EntrySet objects and provide them sequentially

when the getNextEntrySet() method is called.

C.2 Package: datamining.preprocessing

This package contains an abstract class defining the pre-processing step of the data-

mining application and its implementing classes.

ABSTRACT CLASS:

EntryPreProcessor

Abstract class defining the behaviour of all classes that perform the pre-processing

step.
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public abstract EntrySet pre-

process(EntrySet entrySet)

The abstract method preprocess() is in-

tended to prepare the EntrySet so that it is

appropriate for the mining process. The

original EntrySet is passed over and a

modified EntrySet is returned.

IMPLEMENTING CLASSES

DefaultPreprocessor

Before data-mining begins the EntrySets are preprocessed by deleting or modifying a

couple of entries. This class, which is a concrete subclass of the EntryPreProcessor,

allows to

� delete all fragments from an EntrySet.

� delete all hypothetical proteins from an EntrySet.

� remove all old RuleBase annotation (evidence tagged) from all entries in an En-

trySet.

� remove all old Pythia predictions form all entries in an EntrySet.

� include the keyword hierarchy on all keyword data items (predictions, in original

entry) in an EntrySet.

C.3 Package: datamining.splitting

Contains an abstract class defining the splitting step of the data-mining application and

its implementing class.



Xanthippe C Detailed Information on the Exchangeable Components 65

ABSTRACT CLASS:

EntrySetSplitter

The abstract class TrainigSetSplitter has to be extended from classes that aim to split

an EntrySet into two smaller EntrySets, i.e. into a training-set and a target-set, for

crossvalidation reasons.

public abstract EntrySetPairs

splitTrainingSet(EntrySet en-

trySet)

An EntrySet is passed into the splitting

routine. The EntrySet is split into two

smaller EntrySets which are saved in an

EntrySetPair. The data structure Entry-

SetPairs hold one ore more EntrySetPair

and is returned after splitting the EntrySet

in an arbitrary number of EntrySetPair.

IMPLEMENTING CLASSES

DefaultEntrySetSplitter

The DefaultEntrySetSplitter puts the whole EntrySet in the training set part of an En-

trySetPair, whereas the target part remains empty. The EntrySetPairs hence is returned

with only one element. The whole EntrySet is used for the mining process and no

cross-validation is possible with the DefaultEntrySetSplitter.

C.4 Package datamining.arff

ABSTRACT CLASSES:

Contains two abstract classes defining the ARFF-file generation step of the data-mining

application and their implementing classes.
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ArffPreparator

The ArffPreparator returns an incomplete ARFF-file composed of protein data ex-

tracted from all entries of the EntrySet, i.e. it returns the core data and the instances,

whereas the core data of the proteins are considered to be attributes like signature hits

and the instances are the proteins itself. The ARFF-file is incomplete, because the in-

formation which annotation data item the mining process is supposed to mine for, is

still missing.

public abstract Arff getCore-

DataArff(EntrySet entrySet)

This method sets the EntrySet for which

a core data Arff object will be generated.

The generated Arff is returned to the call-

ing method.

ArffGenerator

All implementing classes of the ArffGenerator are supposed to return a complete

ARFF-File which is ready for the mining process. A prepared core data Arff object

is extended with the annotation data item which is supposed to be predicted.

public abstract Arff getCom-

pleteArff(Arff arff, Annota-

tionDataItem annotationItem)

A prepared core data arff and an Annota-

tionDataItem are passed into the method.

The AnnotationDataItem is attached to

the core data Arff object. A complete Arff

object is returned, which is used for the

following mining steps.
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IMPLEMENTING CLASSES

DefaultArffPreparator

The DefaultArffPreparator is a subclass of the ArffPreparator. It extracts all core data

from the protein entries that are specified in the configuration files and saves it in an

Arff object as well as the protein objects itself.

DefaultArffGenerator

The DefaultArffGenerator completes the prepared Arff-File in adding the annotation

data item which the algorithm is supposed to mine for. A new complete ARFF-File is

generated for each annotation item.

C.5 Package datamining.mining

Contains one abstract class defining the mining step of the data-mining application and

its implementing class.

ABSTRACT CLASS:

DataMiner

The abstract class DataMiner that defines the behaviour of classes used for the data-

mining step needs to be extended by all mining algorithms. Different subclasses allow

different mining approaches.

public abstract DecisionTree

mine(Arff arff)

This method generates a DecisionTree for

a given Arff object.
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IMPLEMENTING CLASSES

DefaultDataMiner

An ARFF-file which describes the properties of the training-set proteins is passed into

the mining routine. A decision tree algorithm scans the Arff object and returns a yes/no

decision tree. Therefore a provided implementation of the C4.5 decision tree algorithm

of the weka data-mining package is used. The returned decision tree has the form that

the Weka package suggests.

C.6 Package datamining.postprocessing

Contains one abstract class defining the post-processing step of the data-mining appli-

cation and its implementing class.

ABSTRACT CLASS:

DecisionTreePostProcessor

The tree can be processed and redesigned from classes that extend the DecisionTreeP-

ostProcessor.
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public abstract Deci-

sionTreeSet postpro-

cess(DecisionTree tree,

EntrySet entrySet);

The ABSTRACT CLASS: ’Decision-

TreePostProcessor’ defines the method

postprocess, that requires as input the de-

cision tree output of the previous mining

step, e.g. the output of the Weka pack-

age, and the EntrySet from which the de-

cision tree was created. It is required that

a DecisionTreeSet is returned. The Deci-

sionTreeSet holds a collection of decision

trees. The implementation of the postpro-

cess method is up to the subclasses of the

DecisionTreePostProcessor.

IMPLEMENTING CLASSES

DefaultPostProcessor

The DefaultPostProcessor extends the decision tree that is passed into the postprocess-

ing method. Firstly, it adds initial conditions to it. These are conditions that must be

fulfilled by a protein so that it is assigned to an EntrySet. All proteins that belong to

IPR000222 may be assigned to an EntrySet. Hence the preconditions for these proteins

is to belong to IPR000222. This information is lost in the ARFF-file as it only holds

information that belongs to some of the proteins but not if the condition is fulfilled by

all proteins. Hence the precondition is missing in the tree. Nevertheless, it belongs

to the decision tree and is therefore attached to it as a root node in the postprocess

method of the DefaultPostProcessor. The DefaultPostProcessor also adds the protein

entries themselves to the branches. Therefore it iterates the EntrySet, steps through the

tree for each entry and attaches the entry to the branches whenever it fulfils the condi-

tions. Thus, one can reproduce which proteins of the training-set led to a rule. Finally

the DecisionTree is added to a new instance of a DecisionTreeSet, that is returned with

only this one element.
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SubtreeGenerator

This class post-processes the tree that was generated after mining the ARFF-file. Its

postprocess method attaches the initial conditions and the entries to the decision tree.

In addition it divides the given tree into several subtrees. This has the advantage that

the smaller subtrees are more concise and it makes rule selection easier in the following

mining step. All subtrees are added to a DecisionTreeSet. Before the DecisionTreeSet

is returned to the calling class of the postprocess method, the SubtreeGenerator at-

taches security patterns to the sub-trees. It scans all examples in the training-set that

fulfil all conditions of a path in a given tree and extracts those patterns which do not

happen in the negative examples. The patterns which are specific for the positive exam-

ples are attached to the tree. A parameter postprocessorParameters can be specified

in the configuration file. This specifies the ratio of security patterns, i.e. if the parame-

ter is set to 0.8, the pattern must occur at least in 80% of the positive examples, while

it must not occur more frequently than in 20% of the negative examples.

C.7 Package datamining.selecting

Contains one abstract class defining the selecting step of the data-mining application

and its implementing class.

ABSTRACT CLASS:

DecisionTreeSelector

public abstract De-

cisionTreeSet se-

lect(DecisionTreeSet trees)

This method selects a set of trees with a

certain reliability from a given set of trees.
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IMPLEMENTING CLASSES

DefaultSelector

The DefaultSelector returns the DecisionTreeSet as it is, i.e. it keeps all generated

rules and no rules are cancelled.

C.8 Package datamining.crossvalidation

Contains one abstract class defining the cross-validation step of the data-mining appli-

cation and its implementing class.

ABSTRACT CLASS:

DefaultCrossValidator

public abstract void cross-

validate(DecisionTreeSet de-

cisionTreeSet, EntrySet tar-

getset, MiningTargets min-

ingTargets)

Applies a given set of trees on target pro-

teins and possibly analyzes the result.

IMPLEMENTING CLASSES

DefaultCrossValidator

The DefaultCrossValidator is used if no crossvalidation of the rules is required, as it

keeps the variables that were passed over unchanged.

StandardCrossValidator

The StandardCrossValidator iterates the given DecisionTreeSet that holds the rules. It

takes one tree after the other and iterates the EntrySet to determine which of the entries
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fulfill the conditions of the rules. Those rules that fulfill the condition are attached to

the decision tree.

C.9 Package datamining.exporter

Contains one abstract class defining the exporting step of the data-mining application

and its implementing class. The classes in the ”Exporter” package intend to save the

final rules that were generated in the mining process.

ABSTRACT CLASS:(es)

Exporter

The implementing classes of this class intend to save the final rules that were generated

in the mining process.

public abstract void

saveRules(DecisionTreeSet

treeSet)

Saves rules of a given set of trees, possi-

bly after a selection process.

IMPLEMENTING CLASSES

DefaultExporter

Saves all rules that can be extracted from the given tree set into one file.

ClientExporter

Saves all rules that can be extracted from the given tree set into one file. The file name

is assigned automatically.
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