
Design and implementation of a software
module for multilocus sequence typing

Diploma Thesis

Agnes Angelika Thanbichler

December 19, 2007

Prof. Dr. Bernhard Haubold
FH Weihenstephan
Fakultät Biotechnologie und Bioinformatik
85350 Freising
Germany

Dr. Roald Forsberg
CLC bio A/S
Gustav Wieds Vej 10
8000 Aarhus C
Denmark

Eidesstattliche Erklärung

Ich erkläre hiermit an Eides statt, dass die vorliegende Arbeit von mir selbst und
ohne fremde Hilfe verfasst und noch nicht anderweitig für Prüfungszwecke vorgelegt
wurde. Es wurden keine anderen als die angegebenen Quellen oder Hilfsmittel be-
nutzt. Wörtliche und sinngemäße Zitate sind als solche gekennzeichnet.

Freising, den

...
Agnes Thanbichler

MLST

Acknowledgements
First of all, I want to thank my supervisor at CLC bio, Dr. Roald Forsberg, for
his supporting advices and excellent suggestions during the thesis. I also want to
thank Prof. Dr. Bernhard Haubold, my supervisor at the university, for being such
a great help. Keith A. Jolley (PubMlst [1]) provided lots of information and help, I
am very thankful for this. Many thanks go also to the brilliant team at CLC bio, it
was fun and pleasure working with them all. Last but not least, I am deeply grateful
to Stefan M. Schuster for numerous fruitful discussions and his motivations.

MLST

Contents Contents

Contents

1 Summary 1

2 Introduction 2
2.1 Form and content of the thesis . 2
2.2 Background . 2
2.3 Typing . 3

2.3.1 Phenotypic method . 4
2.3.2 Genotypic method . 4

2.4 CLC bio . 4

3 Multilocus sequence typing 6
3.1 Introduction . 6
3.2 Singlelocus sequence typing . 8
3.3 Comparison to other typing methods 8

3.3.1 Multilocus enzyme electrophoresis (MLEE) 8
3.3.2 Pulsed-field gel electrophoresis (PFGE) 8

3.4 MLST scheme . 9
3.4.1 Sequences . 9
3.4.2 Profiles . 11

3.5 Public databases . 11
3.6 PubMlst . 11

3.6.1 Profiles databases . 11
3.6.2 Isolates databases . 14

3.7 Workflow . 14
3.7.1 Preparation . 14
3.7.2 Multilocus sequence typing . 14
3.7.3 Multilocus sequence analysis 17

4 Development 18
4.1 Motivation of the work . 18
4.2 Aim of the work . 19
4.3 Existing solutions . 19

4.3.1 Online form . 19
4.3.2 Open source software / Freeware 20
4.3.3 Applied Biosystems . 20

4.4 End-user and product analysis . 20
4.5 Software development process . 21

4.5.1 Feature Driven Development (FDD) 21
4.5.2 Test Driven Development (TDD) 22
4.5.3 FDD-TDD approach . 22

4.6 Java . 24
4.7 JUnit . 24

MLST

Contents Contents

4.8 CLC bio’s Software Developer Kit . 24

5 Requirements specification 25
5.1 Purpose . 25
5.2 Scope . 25
5.3 Product perspective . 25
5.4 Product features . 25
5.5 User classes and characteristics . 27

5.5.1 Overview . 27
5.5.2 Detailed model . 27

5.6 System features . 28
5.6.1 Features list . 29
5.6.2 Typing workflow . 29
5.6.3 Create MLST scheme . 30
5.6.4 Download MLST scheme . 32
5.6.5 Merge MLST schemes . 33
5.6.6 Extend MLST scheme . 35
5.6.7 Extend Isolate . 36
5.6.8 Submission of data . 38

5.7 Non-functional requirements . 38
5.7.1 Performance requirements . 38
5.7.2 Software Quality Attributes 39

6 Realization/Implementation 39
6.1 Persistence . 39
6.2 System features . 40

6.2.1 Typing workflow . 40
6.2.2 Create MLST scheme . 48
6.2.3 Download MLST scheme . 48
6.2.4 Merge MLST scheme . 50
6.2.5 Extend MLST scheme . 51
6.2.6 Extend Isolate . 52
6.2.7 Submission of data . 53

6.3 Additional features . 53
6.3.1 Automatic update . 53
6.3.2 Popup menus in views . 54
6.3.3 History . 54
6.3.4 Undo/Redo . 55

6.4 Graphical user interface . 55
6.4.1 History view . 55
6.4.2 Isolate editors and views . 55
6.4.3 MLST scheme editors and views 59

7 Results 62

MLST

Contents Contents

7.1 Overall evaluation . 62
7.2 Detailed evaluation . 63
7.3 User acceptance . 64

8 Discussion 65

9 Conclusion 67

10 References 68

Appendices 72

A PubMlst download - dbase.xml 73

B Glossary & Acronyms 75

C List of Figures 79

D List of Tables 82

MLST

1 SUMMARY

1 Summary

Multilocus sequence typing (MLST) proposed by Maiden et al. [2] had become a
standard in typing of microorganisms in the mid-nineties. MLST means that an
isolate, the pure culture of an organism, can be distinguished from other isolates
by comparing its Deoxyribonucleic acid (DNA) sequence fragments of housekeeping
genes. A housekeeping gene encodes proteins, necessary for the basic maintenance,
core functions and metabolism of a cell. It is constitutively expressed, that means
the expression of the gene is not regulated, which turns housekeeping genes into
good candidates for MLST .

An advantage of MLST is the opportunity of building databases with known typed
sequences. Some public databases, like PubMlst.org [1], have a web-based form to
type bacterial sequences. But there are redundant work steps and the web-based
form is not very flexible, e. g. the typing of sequences is not persisted and users
are dependent on different curators. Curators are responsible for new entries in
databases, which is an advantage regarding accuracy, however, it takes much time.

The aim of this work is to create a fast and userfriendly workflow for typing bac-
terial sequences, which has additional functionality to facilitate the work regarding
multilocus sequence typing .

The result of this work is a software module, the CLC MLST Module. The data
of the databases hosted on PubMlst.org [1] is accessible by download functionality
of the CLC MLST Module. All data acquired during multilocus sequence typing
can be extended and changed locally. The workflow and the dynamic typing of the
sequences was implemented. Furthermore additional functionality was designed and
implemented in order to ease the handling of MLST data.

1 MLST

2 INTRODUCTION

2 Introduction

2.1 Form and content of the thesis

This section gives information about the form and content of this thesis and therefore
assists the reading.

Form

All italicized terms can be found either in the Glossary or the Acronyms (Appendix
B). If you search a glossary entry or an acronym in the text, the formatted terms will
help you to find it very fast. An example is “multilocus sequence typing”. Additional,
the page numbers of the appearances are shown in the Glossary and Acronyms
(Appendix B).

Content

The following pages of Section 2 (Introduction) familiarizes the principal topics of
this work. The Section 3 (Multilocus sequence typing) describes multilocus sequence
typing and introduces public databases and the workflow of MLST . Afterwards all
design issues and utilities used for the implementation of the work are stated in “De-
velopment” in Section 4. Next two sections show the requirements specification and
implementation (Section 5, Section 6). Finally results, discussion and the conclusion
are elaborated (Section 7, Section 8, Section 9).

2.2 Background

Infectious diseases are a well known problem causing high morbidity and mortality
rates as well as high costs. Molecular typing of isolates (the pure microbial sample)
was introduced concerning tasks like:

• Identification of the source organism

• Distinction of infectious from noninfectious strains

• Distinction of relapse from reinfection

Molecular typing and the epidemiological surveillance have been proven to be very
cost-effective by reason of the reduction of infections. The Northwestern Memorial
Hospital in Chicago, Illinois, established an in-house molecular typing program [3].

“The rate of infection fell to 43 percent below the national average, and
approximately 50 deaths were avoided during the 5-year period”, cited
from [4].

MLST 2

2 INTRODUCTION 2.3 Typing

2.3 Typing

The term typing stands for two main aspects, the classification of an organism
and the strain identification. The latter aspect identifies variants of an organism.
To classify an organism, it implies that an prior classification took place, like the
Bergey’s Manual [5]. In this thesis the term typing is used with respect to strain
identification, the distinction between isolates . Attributes of a typing system are

• Reproducibility
The reproducibility refers to a method obtaining same results with every it-
eration performed of someone else. A lack of reproducibility could come from
variation in the method and/or alteration in the microbial sample.

• Specificity
The specificity is the probability that a test of a binary classification (posi-
tive/negative) is negative if the sample is negative. As an example we use the
test: “Is a microorganism a new type?”. The specificity is then the probability
of the case that the test returns “not new type” if the microorganism is not a
new type. Specificity is the probability of true negative located test results.

• Sensitivity
Analogical to the specificity is the sensitivity which is the probability that a
test is positive if the sample is positive. With the example: “Is a microorganism
a new type?”, the sensitivity is the probability of a test result “microorganism
is new type” if the microorganism is a new type. Thus, the sensitivity is the
probability of true positive located test results.

• Discrimination
A good typing system should distinguish between epidemiologically unrelated
isolates, which ideally are assigned to different types.

• Standardization
The typing system should be standardized, that means that there is a unified
and approved procedure to type in different laboratories with no lack of repro-
ducibility. Often standardizations induce the opportunity to build databases
and therefore a collaboration of different laboratories can be achieved.

• Performance
Performance is a main attribute of a typing system. Only if the system can
deliver results fast it will be accepted. A good performance saves time and
costs.

• Effectiveness
Investment reduction of time and money is an essential challenge therefore the
gain of information with time and cost, the effectiveness, is of high impact.

• Ease of typing
The typing should be performed in an easy way that everyone can be trained

3 MLST

2.4 CLC bio 2 INTRODUCTION

fast. The evaluation of the results has to be as easy as possible, since complex
systems are hardly accepted.

There are two different ways to perform typing of microorganisms, the phenotypic
and genotypic methods.

2.3.1 Phenotypic method

A phenotypic method carries out the typing with observable characteristics of an
organism, like biotypes, serotypes, bacteriphage or bacteriocin types and antimicro-
bial susceptibility profiles. Isolates , which cannot be typed, are more common with
phenotypic methods but can also occur in genotypic methods.

The main disadvantages of phenotypic methods are low reproducibility, as well as
specific methods for specific organisms, which cannot be transferred to other or-
ganisms and thus lead to problematic standardization. Phenotypic methods are
generally lower discriminatory than genotypic methods (Section 2.3.2).

2.3.2 Genotypic method

Typing based on molecular level (DNA and Ribonucleic acid (RNA)) is called geno-
typic method.

Main disadvantages of genotypic methods are the isolation of intact chromosomal
DNA and sometimes phenotypic nature, like pathogenicity, cannot be determined.
The detection of pathogenicity or antibiotic characteristics of an organism play an
important role in molecular typing. Genotypic typing systems are especially suited
for evolutionary studies. The benefit of the genotypic method is that all systems are
based on the same information, the combination of four nucleotide bases (cytosine;
guanine; adenine; thymine (DNA) or uracil (RNA)).

2.4 CLC bio

The company CLC bio [6] provides solutions in the area of bioinformatics (Figure
1).

The aim of this project was to build a plug-in with the Software Developer Kit of
CLC bio, described in Section 4.8. Plug-ins are divided into two groups depending
on their size and complexity:

Extensions Relatively small plug-ins with one or few features

Modules Large plug-ins that provide multiple features

The result of this work is the CLC MLST Module ([7]).

MLST 4

2 INTRODUCTION 2.4 CLC bio

Figure 1: CLC bio’s solutions
Main segments of CLC bio’s [6] offers are software, consulting and high performance computing. The
software segment is made up of solutions like the Combined (yellow), Protein (green), DNA (blue) and
RNA (purple) Workbench, as well as the Software Developer Kit (golden) and the Plug-ins (black), as
at November 2007.

5 MLST

3 MULTILOCUS SEQUENCE TYPING

3 Multilocus sequence typing

3.1 Introduction

Multilocus sequence typing is a genotype-based typing method. Commonly 1 to 11
loci (regions of the genome of an organism) of a chromosomal DNA sequence are
used to determine a sequence type, the result of the multilocus sequence typing .

An isolate is typed by comparing allele sequence fragments of certain lengths of
predefined loci to other allele sequences. Sequences, that differ in at least one
nucleotide base, are seen as different allele types . All distinct allele types have
unique numbers. The consequence of this comparison is a combination of numbers
representing the allele sequences. Each of the number is representing an allele type,
a specific allele sequence.

The composition of those allele types forms the sequence type, which also gets a
unique number. Sequence types of different compositions of allele types have different
numbers. The sequence type represents a specific combination of allele type.

The numbering was introduced in order to provide a fast and easy readability. Thus,
it is quite easy to distinguish between two different sequence types , since they have
different numbers. However, the numbering doesn’t provide any information regard-
ing relatedness between the sequences or sequence types .

All sequence types and the associated information about the sequences are collected
in a so-called MLST scheme. MLST schemes are explained in Section 3.4.

MLST schemes are available for several bacterial organisms and fungal MLST
schemes are now emerging ([8]).

Work related to MLST is splitted up into three steps, see also in Figure 2,

1. Preparation/Data collection
All work regarding determination of the nucleotide sequence, used for MLST ,
is done in this step. The isolation of the DNA from an organism and the
Polymerase chain reaction are primary tasks.

2. Multilocus sequence typing
In general the assigning of an isolate to an existing or possible new sequence
type is the main function of this step. Also maintenance of databases, for
example adding new sequences and sequence types , is handled here.

3. Multilocus sequence analysis
All analyses, performed with respect to the data, which is created in step 1
and step 2, are seen as Multilocus sequence analysis .

To gain insight to the work of MLST , the Section 3.7 states the workflow of MLST
in deeper matter.

MLST 6

3 MULTILOCUS SEQUENCE TYPING 3.1 Introduction

Figure 2: Overview of work regarding MLST . The result of the preparation step and multilocus
sequence typing will be added to a database and is stored for more analyses, the Multilocus sequence
analyses.

7 MLST

3.2 Singlelocus sequence typing 3 MULTILOCUS SEQUENCE TYPING

3.2 Singlelocus sequence typing

Singlelocus sequence typing is similar to MLST , however, it is used to type only
with one locus , whereas MLST uses up to 11 loci .

Spa-typing is a well-established practice to type the organism Staphylococcus aureus,
especially the Methicillin-resistant Staphylococcus aureus (MRSA). This organism
has a gene called “spa”, which is the locus for singlelocus sequence typing . Even
though, there is a MLST scheme for the organism Staphylococcus aureus with more
loci , Spa-typing had turned out to be an approved typing method [9, 10, 11].

3.3 Comparison to other typing methods

There are several applied typing systems which are mainly differentiated by the phe-
notypic and genotypic approach. Since sequencing costs and time decrease drasti-
cally the last years, the genotypic based methods gain more and more in importance.
In this section the most commonly used methods are introduced and compared with
MLST . The methods are contrasted in a table at the end of this section, see Table
1.

3.3.1 Multilocus enzyme electrophoresis (MLEE)

Multilocus enzyme electrophoresis (MLEE) is a phenotypic based method. Some
encoded proteins of an organism are used to detect enzyme polymorphisms on basis
of differing electrophoretic mobilities of those proteins on a gel.

MLEE is the precursor of MLST but with the major difference that MLST is
based on the nucleotide information (genotypic approach). MLEE uses complete
genes, whereas MLST uses fragments of genes. However, MLEE can only detect
modifications in the gene, if it causes an alteration in the electrophoretic mobility
of the protein.

3.3.2 Pulsed-field gel electrophoresis (PFGE)

Pulsed-field gel electrophoresis (PFGE) is a genotypic approach. Chromosomal DNA
is digested with rare-cutting restriction enzymes, resulting in several fragments of
different lengths. Those fragments are analysed by separation with agarose gel
elecctrophoresis. Differences in the patterns of the separated fragments are referred
to as restriction fragment length polymorphisms (RFLPs). The resulting DNA-
fragments are too large to be separated by conventional agarose gel electrophoresis,
which fail to separate fragments with more than 40 to 50 kilo base pairs (kbp) length.
In PFGE , fragments of over 1000 kbp are separated by periodically changing the
direction of the electrical field.

In general PFGE and MLST show similar levels of discrimination but sometimes
MLST reveals a higher power of discrimination [12, 13, 14, 15, 16, 17]. However,

MLST 8

3 MULTILOCUS SEQUENCE TYPING 3.4 MLST scheme

the limiting factors are the restriction enzymes in PFGE and the gene loci used in
MLST . PFGE can detect large-scale genomic rearrangements which MLST is not
able to identify therefore PFGE operates more discriminatory in species with mobile
elements. Another main advantage of PFGE over MLST is, that it is carried out
with the absence of any detailed information about the genome.

MLST MLEE PFGE

Technique Genotypic Phenotypic Genotypic

Reproducibility High Low Moderate

Discrimination High Moderate - High Moderate - High

Standardization High Moderate Moderate

Performance Low Moderate Moderate

Effectiveness Moderate Moderate Moderate

Ease of typing High Moderate Moderate

Is chromosomal
information needed?

Yes Yes No

Table 1: Most commonly used typing techniques in molecular biology. Attributes, explained in Section
2.3, are compared of MLST , MLEE and PFGE .

3.4 MLST scheme

An MLST scheme consists of allele sequences (Section 3.4.1) and profiles (Section
3.4.2). MLST schemes define the genes and the fragment lengths in order to accu-
rately type against it. It is not permitted to have redundant entries in an MLST
scheme. The genes and their sequence lengths of an MLST scheme and the organ-
ism itself build the discriminatory power for the distinction of isolates . For instance,
the Mycobacterium tuberculosis varies in 1/10000 nucleotides and would therefore
hardly achieve a satisfactory discriminatory power ([18]).

3.4.1 Sequences

Figure 3a shows some of the sequences included in an MLST scheme. Usually the
sequences of an MLST scheme represent only a fragment of the whole gene sequence
of an organism. The length is around 400 - 600 base pair (bp). This fragment length
was chosen due to the reliably read of a single run of the gel-based automated
sequencing instruments of the mid 1990s.

Sequences in an MLST scheme have an arbitrarily number. If two sequences differ
in at least one nucleotide, they have to have different numbers, the allele types . In
Figure 3a the allele type is contained in the name of each sequence. For example

9 MLST

3.4 MLST scheme 3 MULTILOCUS SEQUENCE TYPING

(a) Some sequences of the gene “arcc” of organism Staphylococcus aureus from Mlst.net [19] in
Fasta format.

(b) Some profiles of the organism Staphylococcus aureus from Mlst.net [19].

Figure 3: Example of some data of a MLST scheme, the Staphyloccocus aureus from Mlst.net [19].

MLST 10

3 MULTILOCUS SEQUENCE TYPING 3.5 Public databases

“arcc-1” means, it is an allele sequence of gene arcc and has the allele type 1. This
allele type is used to form the number combination for the sequence type, thus,
the numbers in the profiles , except the numbers for the sequence type, are allele
numbers.

3.4.2 Profiles

In Figure 3b, you can see some of the profiles of the MLST scheme of organism
Staphylococcus aureus from Mlst.net [19]. Every line except the header represents a
profile specific to a sequence type. The header contains the abbreviation for sequence
type (ST), the names of the genes (arcc, aroe, glpf, gmk_, pta_, tpi_, yqil) and
sometimes information about already performed analyses regarding clonal complexes
(clonal_complex).

The profile gives information about the alleles of each gene for one sequence type.
Figure 4 shows the composition of a Sequence type (ST) 8. All isolates with same
profile must have same sequence type.

3.5 Public databases

There are several public available databases. The most known databases are listed
in Table 2 with organisms they provide information for. Lots of other organisms are
available as well as variable specifications for same organisms.

The databases of the different organisms listed in Table 2 are curated by particular
elected persons, who have expert knowledge of the organism. Only valid data will
be added and therefore those databases appear to be highly accurate.

3.6 PubMlst

The organisms hosted on PubMlst [1] are shown in Table 2. The database of a
specific organism is splitted up into two sections, the Profiles database and the
Isolates database.

3.6.1 Profiles databases

In this database, the MLST scheme information, the profiles and allele sequences,
are hosted. Following forms are available in this database:

• Querying allele sequences

• Querying profiles

• Querying sequence types

• Searching the database

• Downloading profiles, alleles and trace files

11 MLST

3.6 PubMlst 3 MULTILOCUS SEQUENCE TYPING

Figure 4: The connection between the profile and sequences is shown in this figure. Every number in
the profile represents a sequence in the same MLST scheme. The combination of the numbers makes
up a sequence type. All isolates of same sequence type must have the same sequence in every locus.
The sequence type box contains a circular illustration of a bacterial chromosome, which comprises the
sequences of an organism of ST 8.

MLST 12

3 MULTILOCUS SEQUENCE TYPING 3.6 PubMlst

Database Organisms

PubMlst [1]

Acinetobacter baumannii, Aspergillus fumigatus,
Bacillus cereus, Bordetella spp.,
Burkholderia cepacia complex,

Campylobacter fetus,
Campylobacter helveticus,

Campylobacter insulaenigrae,
Campylobacter jejuni, Campylobacter coli,

Campylobacter lari, Campylobacter upsaliensis,
Helicobacter pylori, Klebsiella pneumoniae,
Listeria monocytogenes, Neisseria spp.,

Porphyromonas gingivalis, Pseudomonas aeruginosa,
Streptococcus agalactiae, Streptococcus uberis,
Streptomyces spp., Vibrio parahaemolyticus,

Vibrio vulnificus, Wolbachia spp.,
Candida krusei, Candida tropicalis

Mlst.net [19]

Burkholderia pseudomallei
Candida albicans
Candida glabrata

Cryptococcus neoformans var grubii
Enterococcus faecalis
Enterococcus faecium
Haemophilus influenzae
Staphylococcus aureus

Staphylococcus epidermidis
Streptococcus pneumoniae
Streptococcus pyogenes

Streptococcus suis

Max Planck
Institute

for Infection Biology [20]

Escherichia coli
Moraxella catarrhalis
Salmonella enterica

Yersinia pseudotuberculosis
SpaServer [11] Staphylococcus aureus

Table 2: Public available databases with organisms as at end of October 2007.

13 MLST

3.7 Workflow 3 MULTILOCUS SEQUENCE TYPING

• Determining information about the polymorphic sites found at a locus - locus
explorer

The Profile databases are used to request the sequence type of an isolate. The
online input forms and example results for the organism Streptococcus uberis 1 are
demonstrated in Figure 5.

3.6.2 Isolates databases

All isolates , available for the organism, are hosted in the Isolates database. Addi-
tional information, like the source of the isolate (blood, skin, ...) and geographical
information, is stored here. Parts of this section of the organisms database do not
have public access. The Isolates database contains available forms:

• Querying by sequence types

• Querying by profile

• Searching the database

• Query by cited publication

• Data analysis

• Exporting data

3.7 Workflow

This section examines the standard workflow of multilocus sequence typing . Figure
2 shows an overall view of the tasks in a MLST workspace. Generally there are
three steps

1. Preparation/Data collection

2. Multilocus sequence typing

3. Multilocus sequence analysis

3.7.1 Preparation

This part of a MLST analysis is about DNA isolation, purification and extraction
of the desired gene fragments with Polymerase chain reaction (PCR). Primers are
available in most of the public databases (3.5). The preparation step supplies two
sequences for each gene, the forward and the backward read.

3.7.2 Multilocus sequence typing

1. Assembly
The previous step produces two sequences (reads) for a gene with PCR. The

1http://pubmlst.org/perl/mlstdbnet/mlstdbnet.pl?page=allseq&file=su_profiles.xml

MLST 14

3 MULTILOCUS SEQUENCE TYPING 3.7 Workflow

(a) Input form for multilocus sequence typing query of PubMlst [1].

(b) Result of a multilocus sequence typing query at PubMlst [1]. The sequences which where added
in the input form are sequences of the sequence type 1.

Figure 5: Online available PubMlst’s sequence type query for organism Streptococcus uberis: Figure
5a is showing the input form where you enter the sequences. Figure 5b is an example result. It is the
query result if the input sequences are from a sequence type 1 isolate.

15 MLST

3.7 Workflow 3 MULTILOCUS SEQUENCE TYPING

(c) Result of a multilocus sequence typing query at PubMlst [1]. The sequences which where added
in the input form are sequences of a supposable new sequence type. Gene “gki” was queried
with a sequence which is not contained in the database and thus gets a new allele type. New
allele types lead to supposable new sequence types.

Figure 5: (Continued) Online available PubMlst’s sequence type query for organism Streptococcus
uberis: Figure 5c is an example result. It is an isolate, which did not match with a sequence type in
the database and probably is a new sequence type.

MLST 16

3 MULTILOCUS SEQUENCE TYPING 3.7 Workflow

Figure 6: A contig: The assembly of two sequences (forward read and backward read)is shown. The
result is the consensus sequence, which is used for further analyses.

forward and backward read of the locus is then assembled to get a consensus
sequence for typing. Sometimes only one read, the forward or the backward
read, could be extracted and is used for the assembly . The result of an assem-
bly is the contig , which comprises the assembled sequences. Figure 6 shows an
example of a contig .

2. Trim the consensus sequence
The resulting consensus sequence of the assembly has to be trimmed to the
defined fragment length of the gene in order to type.

3. Query allele type
The trimmed consensus sequence is copied and pasted into an internet brow-
ser. For example the input form of the PubMlst databases [1] can be used to
query the allele type, showed in Figure 5a.

4. Repeat for rest of genes
Step 1 to 3 have to be repeated for each gene. The result is a combination of
numbers, the allele types .

5. Query sequence type
Use the discovered allele types and query the sequence type with for example
the PubMlst databases [1].

6. Submission of new types
New allele types and sequence types should be submitted to a public database.
Some databases are listed in Section 3.5.

3.7.3 Multilocus sequence analysis

The data collected and generated in the previous steps (Preparation, Multilocus
sequence typing) are used to perform evolutionary studies. All analyses with this
data is called Multilocus sequence analysis .

17 MLST

4 DEVELOPMENT

Figure 7: Overview of work regarding MLST . Contrary to Figure 2 the tasks are red which can easily
be performed automatically.

4 Development

4.1 Motivation of the work

Multilocus sequence typing is a state-of-the-art technique in typing microbial organ-
isms. Due to the fact that sequencing costs and time reduce severely, the multilocus
sequence typing technique becomes more important and is adopted in several labora-
tories, because sequencing costs and time is the major constriction of this technique.

In Figure 2 the overall tasks in MLST , the preparation, typing and analyses after-
wards are shown. This figure is also used to show the steps in multilocus sequence
typing , which can easily be automated. As you see in Figure 7, the predominant part
of the MLST box can be automated (red colour). Another aspect of the motivation
of this work is that automation entails a reduction in time, which is a crucial factor
in typing.

In Section 4.3 the few existing solutions are introduced. These solutions provide
functionality for multilocus sequence typing but are not user-friendly and do not
have a fast and easy workflow.

MLST 18

4 DEVELOPMENT 4.2 Aim of the work

4.2 Aim of the work

The aim of this work is to implement a software module, which is user-friendly
and intuitive in handling MLST data. A fast and automated workflow has to be
designed for rapid multilocus sequence typing and the software shall be implemented
in an extendable design. The following specifications are composed for the resulting
software module:

• Advantages:

– User-friendliness, intuitive user interface

– Automated workflow

– Persistence of data

– Extendable software

– Cross-platform

– Support

• Disadvantages:

– Expenses

The most disadvantages of the existing solutions (4.3) are planned to be avoided,
however, expenses will be taken since this is a commercial product.

4.3 Existing solutions

This section examines the current available applications for the purpose ofmultilocus
sequence typing . Disadvantages and advantages are elaborated.

4.3.1 Online form

The well-established databases are shown in Section 3.5. In order to type with those
databases, it is possible to get information with several web-based forms, see the
PubMlst databases [1, 21] at Page 11, as an example.

• Advantages

– Cross-platform

– No extra software installation

• Disadvantages:

– Inexistent or badly arranged persistence of MLST data and results

– Inexistent automation

– Query by copy and paste of MLST data

– Error-prone due to lots of user interactions (e.g. copy and paste)

19 MLST

4.4 End-user and product analysis 4 DEVELOPMENT

4.3.2 Open source software / Freeware

Open source software and freeware stand out due to the fact that this software is
free of charge. Unlike freeware, the code of an open source software is open to the
public and thus it can be extended to specific requirements. Free software is for
example the Staden Package [22, 23], START2 [24] and STARS [25].

• Advantages:

– Free of charge

– Open source software can be extended

– Often persistence of data

• Disadvantages:

– Mostly not cross-platform

– Mostly not user-friendly designed, no intuitive user interface

– Less or no support

4.3.3 Applied Biosystems

Applied Biosystems offers a workflow with using Applied Biosystems 3130 and 3730
Series Capillary Electrophoresis Systems and SeqScape R©Software [26].

• Advantages:

– Support

– User-friendliness

– Persistence of data

• Disadvantages:

– Only available for platforms: Windows 2000, Windows XP

– Expenses

– Inflexible because it is not an extendable software

– Manually query sequence type with an online form

4.4 End-user and product analysis

The software module will be addressed to users in laboratories who are dealing with
molecular typing.

• Laboratories (Institutes, Reference laboratories)

• Hospitals

• Centers of surveillance

MLST 20

4 DEVELOPMENT 4.5 Software development process

There are different cases where users have to make a decision about using software
in order to type. The following cases demonstrate the main situations:

Case 1

Main focus of the research of an end-user is the multilocus sequence analysis of a
specific organism. It is essential for the start of the research that the preparation
(DNA extraction) and multilocus sequence typing has to be performed. Preparation
and multilocus sequence typing requires time which can be reduced.

Case 2

Reference laboratories type more than hundred isolates per month. In order to keep
track of the typed isolates there should be a software solution for enhancement. The
isolates may be used in further analyses.

Case 3

Public available databases don’t offer a MLST scheme of the organism, desired for
typing .

Case 4

Public available databases contain the desired MLST scheme of the organism, but
the end-user doesn’t want to publish the results (upload to the database). Never-
theless the user expects immediate and updated results.

Case 5

The end-user wants to edit a MLST scheme in order to fit his/her needs.

All these cases show that there is a need for a flexible software solution.

4.5 Software development process

The procedure of the software development process is defined in this section. Used
techniques and new approaches are introduced.

4.5.1 Feature Driven Development (FDD)

The Feature Driven Development (FDD) is a iterative software development process
and therefore an agile method. First process of a FDD approach is “Develop an
overall model”. This process produces an overall object model which represents
more shape than definitive content. The next step is “Build features list”. In this
step, a list is generated of all features, which should be implemented. The third and
last process in the startup phase is the “Planning” process. This process supplies
a plan for the upcoming development. The startup phase follows the construction
phase. This phase consists of iterations for every feature in the feature list, processes

21 MLST

4.5 Software development process 4 DEVELOPMENT

Figure 8: The Feature Driven Development software process. Source: Nebulon Pty. Ltd.

“Design by feature” and “Build by feature”. The processes are shown in Figure 8.

In Section 5 (Requirements specification), the overall model and features list of
this system are explained. The prioritizing of this feature list, described in Section
5.6.1, arise from the “Planning” process. All feature’s design and development is
summarized in the Section 6.

4.5.2 Test Driven Development (TDD)

A Test Driven Development is a technique in software development. A cycle of im-
plementing a new feature or new code begins with implementing tests, which fail,
because the code is not yet implemented. After finishing the tests, the implementa-
tion of the feature starts. The feature can only be accepted, when the tests succeed
and the feature is then properly implemented. At the end of the cycle the code is
refactored, but the tests still have to succeed. When a new cycle was implemented,
all tests have to pass!

4.5.3 FDD-TDD approach

The implementation of the module is a FDD with Test Driven Development (TDD).
In Figure 9, you can see a part of the FDD approach, the “Build by feature” part.
This part is extended with TDD in this project.

MLST 22

4 DEVELOPMENT 4.5 Software development process

Figure 9: FDD-TDD approach of this project. The “Build by feature” process of Feature Driven
Development is extended with Test Driven Development. Every feature implementation starts with
implementing tests. After finishing the tests, the functionality can be implemented. The tests have to
succeed, before passing over to refactoring. The “Build by feature” step is iterative, that means the
feature can be partitioned before the implementation starts.

23 MLST

4.6 Java 4 DEVELOPMENT

4.6 Java

The programming language Java [27] was chosen in order to develop with the CLC
Developer Kit (Section 4.8), which is also implemented with Java. This program-
ming language is object-oriented, that means programming deals with creating ob-
jects, manipulating objects and make objects work together. Java is an easy to use
programming language, since Java has an automatic memory allocation and garbage
collection. Advantages of Java are the cross-platform feature (a cross-platform pro-
gram can be used on different platforms, like Windows or Linux), as well as the
characteristic of multithreaded implementations. All the elaborated abilities of Java
turn it to a perfect programming language for this project.

The Java Standard Edition (Java SE) version 1.4 is used to implement the module.
This version is used in order to keep the cross-platform feature since there are
compatibility problems with Mac OS X versions and newer Java versions.

4.7 JUnit

As explained in Section 4.5.3 the software development process includes a Test
Driven Development approach. In order to start testing the planned features written
in Java, the JUnit framework is used.

JUnit is a Java-based framework for writing and automatically executing unit tests.
Unit testing means, testing parts of the program. The size of the unit, that is
intended to be tested, varies from methods to classes to components.

4.8 CLC bio’s Software Developer Kit

The Software Developer Kit of CLC bio is written in Java and provides easy to use
frameworks for establishing algorithms and user interfaces. It is used to implement
plug-ins for the existing software, the CLC Workbenches see Figure 1.

This project is the first module, that is implemented with the CLC Developer Kit.

MLST 24

5 REQUIREMENTS SPECIFICATION

5 Requirements specification

5.1 Purpose

This specification describes the requirements for the plug-in CLC MLST Module.
This plug-in is intended to work in combination with the CLC Workbenches. The
CLC MLST Module will offer a fast workflow for typing microorganisms with Mul-
tilocus sequence typing . Furthermore, the CLC MLST Module will provide an easy
way of creating, editing and managing MLST related data.

5.2 Scope

In this section the scope of the software is described. The features within the scope
are developed, whereas features out of the scope are not.

In scope

• Typing workflow

• Manipulating MLST scheme data

• Manipulating Isolate data

• Downloading MLST schemes

Out of scope

• Functionality for multilocus sequence analysis

5.3 Product perspective

The project is a new plug-in in the product family of upcoming molecular diagnostics
software for CLC bio [6]. This plug-in will only be used in combination with one of
the existing software solutions of CLC bio, the CLC Workbenches (Figure 1).

5.4 Product features

This section represents the overall structure of product features which will be more
elaborated in Section 5.6. Figure 10 shows a data flow diagram of the general
features.

MLST data will be data regarding isolates and MLST schemes . Therefore the
“MLST data” term represents both, isolate data and MLST scheme data.

25 MLST

5.4 Product features 5 REQUIREMENTS SPECIFICATION

Figure 10: A data flow diagram, representing the overall features, which will be integrated in the CLC
MLST Module. Arrows represent data flow, circles imply features. The “User” is an interface and the
“MLST data file” the data storage.

MLST 26

5 REQUIREMENTS SPECIFICATION 5.5 User classes and characteristics

Figure 11: An overall class diagram of the most important classes in the CLC MLST Module

5.5 User classes and characteristics

The real world is interpreted into an object-oriented model here. The following
classes don’t represent software classes, they represent a concept.

5.5.1 Overview

The Figure 11 shows the overall class concept for the CLC MLST Module. These
classes are a view of the objects, handled with MLST , and do not provide Java
classes.

5.5.2 Detailed model

This section describes the model introduced in Section 5.5.1 in detail. The respon-
sibilities and attributes are stated.

5.5.2.1 MLST scheme

The responsibility of this class is the maintenance of the allele sequences and the
profiles . It is in charge of additions of no redundant entries, since redundancy
is forbidden in MLST schemes . Attributes are lists of sequences for every gene,
profiles , comprising all entries for the sequence types , and a version number.

5.5.2.2 SequenceList

This list takes care of sequences. Attributes are the sequences.

27 MLST

5.6 System features 5 REQUIREMENTS SPECIFICATION

5.5.2.3 Profile

The “Profile” class is responsible for the addition and deletion of new number com-
binations in profiles . It is again prohibited to have redundant lines in profiles of an
MLST scheme.

The “Profile” class represents the number combination for every sequence type. An
example of a profile is shown in Figure 3b. In addition to the number combinations
of the sequence types , the “Profile” class also contains the header (the name of the
genes and any additional information).

5.5.2.4 Isolate

The “Isolate” class takes care of the sequences which will be typed. Those sequences
can be assembled into a contig or the sequence itself will be taken for typing. So, the
“Isolate” object can be composed of contigs or sequences depending on the number
of genes. The “Isolate” class is handling the typing , that means that it knows the
“MLST scheme” object, to type against. The “Isolate” class has to have the same
number and names of genes as its referenced “MLST scheme”, otherwise it would
be not clear how to type. The “Isolate” can be in a status, where not all genes have
a sequence or contig assigned.

Attributes are the sequences or the contigs for every gene and a reference to a “MLST
scheme”. The “Isolate” class contains the result of the typing , the numbers of the
eligible sequence types . Additional it contains a report which collects all the results
concerning the typing .

5.5.2.5 Contig

The “Contig” class comprises the sequences, which are assembled together. This
class also encloses a consensus sequence.

Attributes are the sequences, the location of trimming and the resulting consensus
sequence.

5.5.2.6 Sequence

The “Sequence” class represents a sequence. Attributes are the sequence and anno-
tations.

5.6 System features

This section illustrates the system features of the product. A feature will be de-
scribed and prioritized, the stimulus or response sequence is elaborated (written
and use case diagram) and the functional requirements, the features of the software,

MLST 28

5 REQUIREMENTS SPECIFICATION 5.6 System features

are stated.

5.6.1 Features list

A feature set will be divided into subfeatures, the functional requirements. The
following list identifies feature sets of the system and states them in prioritized
order. After this section the individual feature sets are presented and described in
detail.

1. Type isolates with MLST scheme

2. Create MLST scheme

3. Download MLST scheme

4. Merge MLST schemes

5. Extend MLST scheme with sequences or isolates

6. Extend isolate with sequence or contig

7. Submit isolate to a public database

5.6.2 Typing workflow

5.6.2.1 Description and Priority

This feature enables the typing of sequences with multilocus sequence typing . The
user has sequence files for typing.

This feature is the main feature of the product and therefore of highest priority.

5.6.2.2 Stimulus/Response Sequences

1. The user imports sequence files into a CLC Workbench

2. The user executes an action for typing with MLST

3. The system brings up a window

4. The user selects the sequences for typing

5. The user verifies the selection

6. Parameters for the assembly and the MLST scheme have to be set by the user
and verified

7. The system offers an automatic assignment of the selected sequences to the
genes of the selected MLST scheme

8. The user verifies or changes the automatic assignment

9. The user finishes the window

29 MLST

5.6 System features 5 REQUIREMENTS SPECIFICATION

10. The system signals the typing result to the user

11. The system creates an object (Isolate) containing the sequences assigned to
the genes and the typing result.

The use case diagram in Figure 12 demonstrates the use case “Typing workflow”.

5.6.2.3 Functional Requirements

Requirement 1 The system shall offer an import functionality for sequences

Requirement 2 The system shall have a “Typing” action

Requirement 3 The system has to have an automatic assignment option

Requirement 4 The system offers a form for user inputs

Requirement 5 The system shall be able to type sequences against aMLST scheme

Requirement 6 The system shall create an object containing the sequences and the
typing results

Requirement 7 If the user enters invalid input the next step cannot be entered or
the action cannot be finished

5.6.3 Create MLST scheme

5.6.3.1 Description and Priority

It is absolutely essential for typing that an MLST scheme is used. MLST schemes
have become standard and can be exchanged with different laboratories. It is not
possible to create new MLST schemes with public databases and therefore this is a
high priority feature.

5.6.3.2 Stimulus/Response Sequences

1. The user executes an action associated with the feature “Create MLST scheme”

2. The system opens a dialog

3. The user enters gene names which shall be contained in the MLST scheme

4. The user verifies the input

5. If the user has allele sequences to include into theMLST scheme, the sequences
can be added.

The use case diagram, Figure 13, demonstrates the use case “Create MLST scheme”.

MLST 30

5 REQUIREMENTS SPECIFICATION 5.6 System features

Figure 12: Use case of system feature “Typing workflow”. Main actors are the user and the system.
The subsystem ’Typing’ represents the main funtionality for typing .

31 MLST

5.6 System features 5 REQUIREMENTS SPECIFICATION

Figure 13: Use case of system feature “Create MLST scheme”.

5.6.3.3 Functional Requirements

Requirement 1 The system shall have an action for creating new MLST schemes

Requirement 2 The system shall offer a form for user inputs, the gene names

Requirement 3 The system shall offer a form for adding sequences

Requirement 4 If the user enters invalid input the next step cannot be entered or
the action cannot be finished

5.6.4 Download MLST scheme

5.6.4.1 Description and Priority

The user shall have the option to download an existing MLST scheme to work with,
means to type, and to extend and change it. Public databases contain several MLST
schemes , see in Section 3.5. This feature is of high priority.

5.6.4.2 Stimulus/Response Sequences

1. The user executes an action for downloading MLST schemes

2. The system opens a dialog window

3. The system offers organisms which are available for the download

4. The user selects the desired organisms

5. The system downloads and saves the selected MLST schemes

MLST 32

5 REQUIREMENTS SPECIFICATION 5.6 System features

The use case diagram, Figure 14, demonstrates the use case “Download MLST
scheme”.

Figure 14: Use case of system feature “Download MLST scheme”.

5.6.4.3 Functional Requirements

Requirement 1 The system shall have an action concerning download of MLST
schemes

Requirement 2 The system downloads the names of the available organisms

Requirement 3 The system offers a dialog to show the organisms and where the
user is able to set parameters (where to save)

Requirement 4 The system shall download MLST schemes

Requirement 5 The system shall save MLST schemes

5.6.5 Merge MLST schemes

5.6.5.1 Description and Priority

The merge of MLST schemes is required for summarizing different MLST schemes .
If there are two ore more MLST schemes , it is then possible to create a common
MLST scheme, comprising all information. This merged MLST scheme is then
used for typing. For instance, it is necessary to merge MLST schemes for using
an updated version. In this situation an updated version is a version of an MLST
scheme, that was downloaded from a public database and extended locally. If there

33 MLST

5.6 System features 5 REQUIREMENTS SPECIFICATION

Figure 15: Use case of system feature “Merge MLST schemes”.

is a new version of the downloaded MLST scheme available, the user wants to merge
local changes with changes of the public database.

This feature is of high priority.

5.6.5.2 Stimulus/Response Sequences

1. Execute an action associated with merging MLST schemes

2. The system opens a dialog window

3. Set the MLST schemes to merge

4. Verify the selection and finish the action

5. The system calculates a common MLST scheme

6. If the selected MLST schemes are not compatible, that means they belong to
different organisms or have different genes, the calculation will not be executed.

The following use case diagram, Figure 15, demonstrates the use case “Merge MLST
schemes”.

5.6.5.3 Functional Requirements

Requirement 1 The system shall have an action for merging MLST schemes

Requirement 2 The system shall have a dialog where the user can set the MLST

MLST 34

5 REQUIREMENTS SPECIFICATION 5.6 System features

schemes and other parameters

Requirement 3 The system shall have an algorithm merging two or more MLST
schemes

Requirement 4 The system shall identify not compatible MLST schemes

5.6.6 Extend MLST scheme

5.6.6.1 Description and Priority

An MLST scheme contains entries for sequence types . When an isolate is typed, it
occurs that a sequence type is assigned or that the isolate is a new type. In the case
of a new type, the user wants to include the new type into the MLST scheme. The
feature of extending MLST schemes handles the addition of new sequence types , in
order to have an updated version of a MLST scheme. This system feature has a
high priority.

5.6.6.2 Stimulus/Response Sequences

The user has sequences, which represent a new sequence type after he/she typed the
sequences against an MLST scheme.

1. The user executes an action which enables adding of new sequence types to a
MLST scheme

2. The system opens a dialog window

3. The user selects the isolates

4. The user verifies the selection

5. The system adds the isolates which are new types to the MLST scheme

6. The system updates the isolates with the new version of the MLST scheme

The diagram in Figure 16 demonstrates the use case “Extend MLST scheme”.

5.6.6.3 Functional Requirements

Requirement 1 The system shall have an action associated with extending MLST
schemes

Requirement 2 The system shall have a dialog window, where the user can select
the isolates and set parameters

Requirement 3 The system shall have an algorithm, which adds isolates as se-
quence types to an MLST scheme

Requirement 4 The system shall distinguish between new and defined sequence
types as isolates

35 MLST

5.6 System features 5 REQUIREMENTS SPECIFICATION

Figure 16: Use case of system feature “Extend MLST scheme”

Requirement 5 The system shall have an update functionality, which updates an
isolate with respect to its associated MLST scheme. Update an isolate means
to type the isolate.

5.6.7 Extend Isolate

5.6.7.1 Description and Priority

The Isolate class will have the responsibility of managing the sequences and the
typing result. The Isolate class shall be able to contain different forms of sequences
(sequences itself or contigs). The number of sequences or contigs in the Isolate
depends on the number of genes of the associated MLST scheme. The user is able
to create an isolate with the feature “Typing workflow”, however, the isolate doesn’t
have to be fully assigned. That means, that the isolate has not recognized or not
assigned allele types causing a higher number of possible sequence types . After the
creation of an isolate the user is able to delete already assigned sequences or contigs
and extend the isolate with other data.

For instance a laboratory types 100 isolates and starts with preparing the data
collection of the first gene of all 100 isolates . The laboratory is then already able
to create the Isolates objects in the software only with the first sequenced gene of
each isolate.

This feature is of high priority.

MLST 36

5 REQUIREMENTS SPECIFICATION 5.6 System features

Figure 17: Use case of system feature “Extend Isolate”. The subsystem “Typing ” of the system feature
“Typing workflow” in Section 5.6.2, Page 29, is reused.

5.6.7.2 Stimulus/Response Sequences

1. The user executes an action associated with the extension of an isolate

2. The system opens a dialog window

3. The user has to select an isolate

4. The system performs the “Typing” feature, see in Section 5.6.2. The subsystem
“Typing” in the Figure 12, Page 31, is executed.

5. The system adds the information to the existing isolate

The use case diagram in Figure 17 demonstrates the use case “Extend Isolate”.

5.6.7.3 Functional Requirements

Requirement 1 The system shall have an action associated with the extension of
isolates

Requirement 2 The system offers an input form for parameters and a dialog win-
dow

37 MLST

5.7 Non-functional requirements 5 REQUIREMENTS SPECIFICATION

Requirement 3 The system has an algorithm for typing

Requirement 4 The system shall add information to existing Isolate objects

5.6.8 Submission of data

5.6.8.1 Description and Priority

The profit of public databases is the aggregation of data around the world. In order
to keep those databases up-to-date, it is beneficial that a lot of users submit their
data. In order to automate the submission, the system feature “Submission of data”
is introduced and prioritized with a medium level.

5.6.8.2 Stimulus/Response Sequences

1. The user selects the data which shall be submitted

2. The user executes an action associated with the submission of data

3. The system opens a dialog window

4. The user enters additional information (for example name, institute, source of
isolate, ...)

5. The system submits the data with additional information to a public database

The following use case diagram, Figure 18, demonstrates the use case “Submission
of data”.

5.6.8.3 Functional Requirements

Requirement 1 The system shall have an action associated with the submission of
data

Requirement 2 The system shall offer a dialog window for user input

Requirement 3 The system shall have an algorithm for the submission of data

5.7 Non-functional requirements

In this section the non-functional requirements are elaborated. Non-functional re-
quirements are quality attributes of the software rather than specific behaviors which
is elaborated in Section 5.6.

5.7.1 Performance requirements

The performance for the system feature “Typing workflow” will be under 1 second
for an MLST scheme described in Section 3.4. All other system features will vary
in the performance, however, the user shall be notified immediately with a progress

MLST 38

6 REALIZATION/IMPLEMENTATION

Figure 18: Use case of system feature “Submission of data”.

bar.

5.7.2 Software Quality Attributes

The software shall be self-explained in order to ease the use and this should result
in high usability. The user expects a software typing correct, so reliability in typing
is also of high importance for the consumer acceptance. The automatic typing
workflow shall be as reliable as possible. The software shall also be able to be easily
integrated into the existing workflow of users.

From the view of the developer the maintainability is important, since the software
will be maintained and extended by other developers.

6 Realization/Implementation

The realization of the specification is described in detail in this section. For some
features there are utilities of the company CLC bio [6]. These utilities are mentioned
in order to differentiate the work of this thesis and the existing software.

6.1 Persistence

The fundamental requirement for MLST is the persistence of the data acquired
during typing. For this purpose, the concept of the classes in Section 5.5 is translated

39 MLST

6.2 System features 6 REALIZATION/IMPLEMENTATION

into a Java concept, demonstrated in Figure 19.

The persistence is handled with serialization of Java objects. Serialization is the
process of saving an object to a storage medium. The framework for saving the
objects has already been implemented, therefore the objects of the CLC MLST
Module only had to implement the existing interfaces. A database approach was
not introduced with the CLC MLST Module project, since the database approach
was implemented by other developers at the same time.

6.2 System features

6.2.1 Typing workflow

The workflow regarding Multilocus sequence typing starts with the import of se-
quences of an organism. Those sequences are the basis of the typing. The function-
ality of this import is available with the existing software.

The assembly functionality is also available with the existing software and is there-
fore reused. The “Assembly to reference” algorithm of the CLC bio software is used,
in order to assign automatic and to calculate the contigs . This algorithm tries to
align the input sequences to a reference sequence and the result is a contig . The
consensus sequence of this contig is used to type against an MLST scheme.

Next, the functional requirements of Section 5.6.2 are described with the realized
implementation.

Requirement 1 The system shall offer an import functionality for
sequences
This requirement was already implemented with the existing software

Requirement 2 The system shall have a “Typing” action
The action is called “Assembly and create Isolate”, since the sequences are
assembled and the result is an Isolate object.

Requirement 3 The system has to have an automatic assignment option
In Figure 23c (Page 46), the dialog shows the automatic assignment for gene
“arcC”. The left list of sequences couldn’t be aligned to the reference sequence
(first allele sequence of the gene “arcC” in the associated MLST scheme), and
therefore the sequences in the left list were not assigned. Only the sequence
“arcC_1_F” and “arcC_1_R” were able to be assigned. In the next steps
of the dialog the other genes are handled. The activity diagram in Figure
20 demonstrates the automatic assignment. An activity diagram shows the
step-by-step operations of a system.

Requirement 4 The system offers a form for user inputs
The input step is shown in Figure 23b (Page 45). The MLST scheme, align-
ment options and trimming options can be set. Furthermore, information is
shown that the user can finish now (only if the parameters are valid, e.g. the

MLST 40

6 REALIZATION/IMPLEMENTATION 6.2 System features

Figure 19: Data classes introduced with the MLST module. Some classes like the Contig and the
SequenceList have already been introduced with the CLC bio software and are reused for the MLST
module project.

41 MLST

6.2 System features 6 REALIZATION/IMPLEMENTATION

Figure 20: Activity diagram of the automatic assignment

MLST scheme is set) and the automatic assignment will assign the sequences
to the genes.

Requirement 5 The system shall be able to type sequences against an
MLST scheme
The algorithm for typing sequences against an MLST scheme was imple-
mented. The activity diagrams in Figures 21, 22 visualise the typing algo-
rithm.

Requirement 6 The system shall create an object containing the se-
quences and the typing results
The system creates the Isolate object, filled with the result information. In
Figure 23e (Page 47), the Isolate object is shown with its editor, described in
Section 6.4 (Page 55).

Requirement 7 If the user enters invalid input the next step cannot
be entered or the action cannot be finished
This is realized with the dialog windows of the action “Assembly and Create
Isolate”. The “Next” and “Finish” button (e.g. in Figure 23) is enabled or
disabled according to the entered parameters.

MLST 42

6 REALIZATION/IMPLEMENTATION 6.2 System features

Figure 21: This activity diagram visualises the algorithm for the determination of the allele profile.
The first iteration (green) gets the sequences for each gene of the isolate. This sequence can come
from a contig object or from a sequence object. This sequence is then compared to allele sequences
of the MLST scheme in the second iteration (blue). If the sequence matches with an allele sequence
of the MLST scheme the profile number of the allele sequence is fetched and assigned to the isolate’s
sequence. If there is no match the isolate’s sequence is a new allele sequence. The combination of the
numbers determined in this algorithm represents the profile of the isolate.

43 MLST

6.2 System features 6 REALIZATION/IMPLEMENTATION

Figure 22: The activity diagram shows the determination of a list of possible sequence types, the
typing algorithm. As soon as the profile of the isolate contains an entry with a negative number (this
indicates a new allele type), the sequence type list will be extended with an entry of a ’New sequence
type’. The isolate profile is compared to the entries of the profile list of the referenced MLST scheme.
If the profile entries match, the sequence type of the MLST scheme’s profile entry is determined and
added to the sequence type list. Not assigned gene entries of the isolate will match with every entry,
so the user gets a list of possible sequence types.

MLST 44

6 REALIZATION/IMPLEMENTATION 6.2 System features

(a) Dialog window for selecting the input objects

(b) Input parameter window

Figure 23: Dialog windows of the action “Assembly and Create Isolate” are shown by screenshots of
the CLC MLST Module 1.0. The selection of the input objects (23a) is the first step. Afterwards, the
MLST scheme, input parameters for the alignment and the trimming can be set (23b).

45 MLST

6.2 System features 6 REALIZATION/IMPLEMENTATION

(c) Automatic assignment for the gene “arcC” was performed in
this step of the action. Two sequences could be assigned, the
arcC_1_F and arcC_1_R sequence. The user is able to change
the automatic assignment.

(d) The window shows the options for handling the result. This step
is similar to the result handling steps in all actions.

Figure 23: (Continued) Dialog windows of the action “Assembly and Create Isolate” are shown by
screenshots of the CLC MLST Module 1.0. The Figure 23c reveals the automatic assignment of a
gene. Users have the option of opening or saving the result immediately (Figure 23d).

MLST 46

6 REALIZATION/IMPLEMENTATION 6.2 System features

(e) The result of the action “Assembly and Create Isolate” is a Isolate object. This is
represented in this figure with one of the editor views.

Figure 23: (Continued) Dialog windows of the action “Assembly and Create Isolate” are shown by
screenshots of the CLC MLST Module 1.0. The Isolate object comprises results and parameters of the
action.

47 MLST

6.2 System features 6 REALIZATION/IMPLEMENTATION

6.2.2 Create MLST scheme

Requirement 1 The system shall have an action for creating new
MLST schemes
The action is called “Create MLST Scheme”.

Requirement 2 The system shall offer a form for user inputs, the
gene names
The Figure 24a is a screenshot of the input window. Gene names and the
name of the MLST scheme can be added. At least one gene name has to be
added.

Requirement 3 The system shall offer a form for adding sequences
Users can select allele sequences with the creation of theMLST scheme. Those
sequences are then added to the scheme (Figure 24b).

Requirement 4 If the user enters invalid input the next step cannot
be entered or the action cannot be finished
This is realized with the dialog windows of the action “Create MLST scheme”.
The “Next” and “Finish” buttons (e.g. in Figure 24a) are enabled or disabled
according to the entered parameters.

6.2.3 Download MLST scheme

Requirement 1 The system shall have an action concerning download
of MLST schemes
It is possible to download MLST schemes from PubMlst [1] with the CLC
MLST Module. The name of the action is “Download MLST schemes”.

Requirement 2 The system downloads the names of the available or-
ganisms
Figure 25 is a screenshot of the download action. This figure shows some of
the organisms which are available from PubMlst [1] and MLST.net [19].

The names and links to the data of the available organisms are downloaded
with an xml file from PubMlst [1], described in the Appendix A. This file is
parsed and the organisms are represented, in order that the user can select
the required MLST schemes . The links to the data files (profile file and fasta
formatted sequence files) are saved temporarily.

Requirement 3 The system offers a dialog to show the organisms and
where the user is able to set parameters (where to save)
Figure 25 shows the organisms. Parameters for saving the resulting MLST
scheme are set in a result handling window (compare the Figure 23d).

Requirement 4 The system shall download MLST schemes
The system downloads the MLST schemes with the information set by the
user, i. e. the organisms. The links to the data files are downloaded with an

MLST 48

6 REALIZATION/IMPLEMENTATION 6.2 System features

(a) Dialog window for the input of a new MLST scheme

(b) Input sequences can be added with the creation of a MLST scheme.
These sequences are allele sequences of a specific gene (arcC in the ex-
ample screenshot).

Figure 24: Dialog windows of the action “Create MLST scheme” are shown by screenshots of the CLC
MLST Module 1.0.

49 MLST

6.2 System features 6 REALIZATION/IMPLEMENTATION

Figure 25: The download dialog window of the CLC MLST Module is shown in this figure. Some of
the available organisms of PubMlst [1] are represented within the screenshot.

xml file and are now used to download the specific data files.

Requirement 5 The system shall save MLST schemes
The persistence of MLST schemes is handled with the MLST scheme object.
The user can set an option in the dialog window of the action, whether the
result object should be saved or just opened (compare Figure 23d, Page 46).

6.2.4 Merge MLST scheme

Requirement 1 The system shall have an action for merging MLST
schemes
The name of the action is “Merge MLST Scheme” and is implemented.

Requirement 2 The system shall have a dialog where the user can set
the MLST schemes and other parameters
The action opens a dialog window. The user can set the MLST schemes and
a parameter in this dialog window. The parameter handles the referencing of
the isolates . Users can decide, whether the isolates , referenced to the input
MLST schemes , should be referenced to the new merged MLST scheme.

Requirement 3 The system shall have an algorithm merging two or
more MLST schemes
The algorithm was developed. The entries in the first MLST scheme will be

MLST 50

6 REALIZATION/IMPLEMENTATION 6.2 System features

kept in the new MLST scheme, whereas the other input MLST schemes are
adapted to the first input MLST scheme’s entries. In fact, the first input
MLST scheme is copied and the other input MLST schemes are adapted to
the copy. The algorithm detects same entries with different allele numbers
and adapts the entries.

Requirement 4 The system shall identify not compatible MLST schemes
MLST schemes with different names or numbers of genes are not able to be
merged. A different number of genes would cause an incomplete mergedMLST
scheme. Different names of the genes cause problems with the assignment of
the MLST schemes ’s genes. The algorithm is not merging incompatible MLST
schemes .

6.2.5 Extend MLST scheme

Requirement 1 The system shall have an action associated with ex-
tending MLST schemes
The action “Add Isolates to MLST scheme” was implemented, in order to add
isolates , representing new sequence types , to the referenced MLST scheme. In
addition, an action called “Add Sequences to MLST scheme” was implemented
to add allele sequences to the genes of an MLST scheme.

Requirement 2 The system shall have a dialog window, where the user
can select the isolates and set parameters
A dialog window was developed for the user to select the isolates , intended for
the addition to its referenced MLST scheme. Furthermore, the dialog window
for adding sequences to the MLST scheme was developed, which is also used
in the action “Create MLST scheme” (Section 6.2.2 and represented in the
Figure 24b, Page 49).

Requirement 3 The system shall have an algorithm, which adds iso-
lates as sequence types to an MLST scheme
The algorithm is implemented for adding isolates to their referenced MLST
schemes . Isolates with one negative number in the array for the possible se-
quence types are valid for addition to the MLST scheme, since this indicates
that this isolate is a new sequence type. First of all the sequences or consensus
sequences of contigs are added to the MLST scheme. Then the Isolate object
is updated with the extended MLST scheme. In the end the updated profile
(allele numbers) of the isolate is added to the profiles of the MLST scheme.

Requirement 4 The system shall distinguish between new and defined
sequence types as isolates
The Isolate object contains an array of integers, representing the possible
sequence types . An isolate is defined, if the array is of length one and the
entry is not negative. A negative entry indicates a possible new sequence type.
Only Isolates with an array length of one and a negative entry can be added

51 MLST

6.2 System features 6 REALIZATION/IMPLEMENTATION

to a MLST scheme, since this indicates a new sequence type.

Requirement 5 The system shall have an update functionality, which
updates an isolate with respect to its associated MLST scheme.
Update an isolate means to type the isolate.
Typing was implemented (Section 6.2.1, Page 40).

6.2.6 Extend Isolate

Requirement 1 The system shall have an action associated with the
extension of isolates
The action is called “Assemble to Existing Isolate” and was implemented
reusing the already finished code of the action “Assembly and Create Isolate”.

Requirement 2 The system offers an input form for parameters and
a dialog window
The input objects are the isolate and sequences, which shall be added. Those
objects are selected in the first step of the dialog window for the “Assemble
to Existing Isolate” action. Afterwards parameters for the alignment and
trimming can be set. The user can finish or continue to the next step (only
if parameters are valid) and the automatic assigning follows, see Figure 20
at Page 42. This action is not implemented completely new, it is derived of
the typing workflow implemented in the action “Assembly and Create Isolate”.
The result is not a newly created Isolate object, the result information is added
to the Isolate object, which was selected at the beginning of the action.

Requirement 3 The system has an algorithm for typing
Typing was implemented, see Section 6.2.1 at Page 40.

Requirement 4 The system shall add information to existing Isolate
objects
The Isolate object contains 1 - 11 objects which can be sequence objects or
contig objects. Addition of sequences to an Isolate object is handled with the
following description.

• If the isolate doesn’t contain an element associated with a gene, the
created object (contig or sequence) is added to the Isolate object.

• If there has already been assigned a sequence object to a gene and the al-
gorithm tries to add another sequence object, all sequences are assembled
into a contig .

• The addition of a sequence to a contig is performed with the existing algo-
rithm “Add Sequences to Contig” of the CLC Workbench. The sequence
can affect the consensus sequence of the contig .

MLST 52

6 REALIZATION/IMPLEMENTATION 6.3 Additional features

6.2.7 Submission of data

The feature “Submission of data” is the counterpart of the system feature “Download
MLST scheme”. The download feature downloads MLST schemes from PubMlst.org
[1], as described in Section 6.2.3 at Page 48. The submission feature should upload
new acquired data from typing to a public database.

The submission of data is handled via emails. There are specific sheets, which
have to be filled out by the submitter. The forms have to be attached to an email
and have to be sent to a curator of the specific organism. This curator decides
whether the data is valid and will be added to the database or the data will be
ignored. Since there is a reorganization of the submission function on the database
side of PubMlst.org [1], the CLC MLST Module will not include the system feature
“Submission of data”. This feature is postponed to a later version of the software.

6.3 Additional features

6.3.1 Automatic update

In order to ease the handling of all data regarding the molecular typing with multilo-
cus sequence typing , an automatic update functionality was introduced. The update
functionality uses the developed algorithm of typing in Section 6.2.1 at Page 40.

The following situations show the benefit of an automatic update.

Problem 1

The user changes the MLST scheme, for example he/she deletes a sequence or a
profile. All isolates have to be updated again, also isolates , which have been typed
long time ago.

Problem 2

The isolate has to be changed since for example the contig has a wrongly identified
nucleotide. The isolate has to be updated again.

Solution

The stated problems include repeated updates/typing of the isolates . This is very
time-consuming and unnecessary.

The solution for problem 1 is a version concept for the MLST scheme. The MLST
scheme has a version. On every change of the object the version also changes. The
isolate contains a reference of the MLST scheme and the version, which was used to
update the last time. If the user opens the isolate in a view, the version is checked
and if the isolate’s version differs to the version in the MLST scheme, a dialog
window, see in Figure 26, is shown.The user has the possiblitiy of updating the
Isolate object or keeping the object in the state it is. If the user cancels the dialog

53 MLST

6.3 Additional features 6 REALIZATION/IMPLEMENTATION

Figure 26: The automatic update dialog window is activated with opening an isolate and differing
versions of the isolate and its referenced MLST scheme.

window, the isolate state is kept and the automatic update will not be performed
until the isolate is opened again.

The solution for problem 2 is a listener which listens to every change in the isolate.
The typing algorithm is performed when a change happens.

6.3.2 Popup menus in views

The views of the objects, described in Section 6.4, have popup menus with the right
mouse click. These menus provide fast workflows of data extraction.

For example, the MLST scheme profiles table view (6.4.3) has a popup menu for
extracting joined sequences, the concatenated sequence of a sequence type as well as
removing sequence types . In addition, it is possible to align sequence types with this
popup menu.

The MLST scheme allele table view (6.4.3) has a popup menu for extracting allele
sequences into a sequence list object or in an alignment. Furthermore, with this
popup menu, allele sequences can be removed.

6.3.3 History

With every object in the CLC Workbenches, a history is attached. The history
collects all changes, performed on an object. The utility of a history messaging
system is available with the Developer Kit and was implemented in the CLC MLST

MLST 54

6 REALIZATION/IMPLEMENTATION 6.4 Graphical user interface

Module. All changes are recorded with parameters, so that the user has an overview
of all tasks according to an object. The Figure 27 is the history view of an MLST
scheme.

6.3.4 Undo/Redo

The Developer Kit provides a framework for undo and redo operations on objects.
This framework was used to implement the undo/redo functionality.

6.4 Graphical user interface

6.4.1 History view

The history of an object in a CLCWorkbench (Section 6.3.3) is a log file for recording
all changes with parameters of this object. Thus, the user has an overview of all
changes in the object. Figure 27 shows some changes in an MLST scheme object.

6.4.2 Isolate editors and views

Isolate table view

The main view of an isolate is the Isolate table view. This view shows the assigned
objects in the table. The table displays the gene, its assigned object and the allele
type, resulted from the typing algorithm. In Figure 28, the gene “arcC” and “ddl”
were identified as new allele types , whereas the other allele sequences were identified
as allele type one. Below the table are buttons for opening, deleting and changing
the assigned objects. The “Align to Nearest” button aligns the assigned sequence
(only possible with a new allele type) to the allele sequences of the MLST scheme
with the alignment functionality of the CLC Workbench, in order to find the nearest
allele sequence. In the middle of the view, the possible sequence types are shown.
Figure 28 represents a possible new sequence type. At the bottom is information
of the referenced MLST scheme. Three buttons were implemented for finding the
referenced MLST scheme in the navigator (displayed on the left hand side in the
CLC Workbench), changing the referencedMLST scheme and for adding this isolate
to its MLST scheme.

Isolate report view

This view collects all information regarding the typing of the isolate. The result is
presented in a printable layout for the user.

55 MLST

6.4 Graphical user interface 6 REALIZATION/IMPLEMENTATION

Figure 27: History entries are shown in a history view in every object in the CLC Workbench. This is
a MLST scheme representing some changes.

MLST 56

6 REALIZATION/IMPLEMENTATION 6.4 Graphical user interface

Figure 28: The main view of the Isolate object. All assigned objects are shown for the genes as well
as the referenced MLST scheme.

57 MLST

6.4 Graphical user interface 6 REALIZATION/IMPLEMENTATION

Figure 29: This figure represents the view of all collected informations of the typing for this isolate,
the Isolate report view.

MLST 58

6 REALIZATION/IMPLEMENTATION 6.4 Graphical user interface

6.4.3 MLST scheme editors and views

Allele table view

This view contains all information about the alleles represented in theMLST scheme,
see in Figure 30. The first table contains the genes and the number of alleles. The
user selects one row and the second table shows the sequences contained in the se-
lected gene with specific information. Two buttons are available on the upper side.
The “Add Sequences” button opens an action for adding sequences to the genes of
the MLST scheme. The “Add Isolates” button opens a dialog window, containing
the referenced isolates , standing for new sequence types . There, the user is able to
select isolates for the addition as sequence types to the MLST scheme.

Profiles table view

The Profiles table view, Figure 31, displays all included profiles of a MLST scheme.
With the filter option on the upper side the user can refine the shown profiles.

59 MLST

6.4 Graphical user interface 6 REALIZATION/IMPLEMENTATION

Figure 30: This figure represents the view of a MLST scheme object with its allele sequences in tables.

MLST 60

6 REALIZATION/IMPLEMENTATION 6.4 Graphical user interface

Figure 31: This view of a MLST scheme shows the profiles contained in the object.

61 MLST

7 RESULTS

Figure 32: Mlst workflow. This figure shows the difference of time spent for typing an isolate with
the CLC MLST Module and an online form, e.g. PubMlst [1].

7 Results

The result of this thesis is a software module, the CLC MLST Module. This module
is a plug-in for the CLC bio Workbench (DNA and Combined) and is particularly
suitable for rapid molecular typing with Multilocus sequence typing and the man-
agement of MLST related data.

7.1 Overall evaluation

The module provides a fast workflow for typing with MLST . Figure 32 compares
the expenditure of time between an online form, e.g. PubMlst [1] or MLST.net [19],
and the CLC MLST Module. It shows that the CLC MLST Module can bring down
the time, spent on one isolate, to one minute. However, one must know that the
potential editing of the contig can extend the amount of time. Based on the quality
of the sequence reads, there could be the need of reviewing the contig .

Contrary to other software solutions, see Section 4.3, the module offers a flexible
environment. The dynamic update functionality highly enhances the handling of
the data.

MLST 62

7 RESULTS 7.2 Detailed evaluation

Figure 33: Evaluation of trace files, provided by PubMlst [1], for organism Streptococcus uberis.

7.2 Detailed evaluation

For evaluation purposes, available reads of typed isolates from PubMlst [1] were
downloaded. This data was used to test the MLST framework of the CLC MLST
Module.

Trace data, the fluorescent peak traces of sequenced DNA, of the organism Strep-
tococcus uberis was used for analysing the time expenditure of the algorithm. Al-
together, 86 trace files were downloaded. Those files construct 118 sequence types .
The algorithm “Assemble and Create Isolate”, the typing workflow, is used and can
be separated into three steps:

1. Arrange trace data to genes

2. Create isolate (assemble the trace data)

3. Update isolate with its referenced MLST scheme

In this evaluation, 110 isolates were typed correctly with the workflow . The average
time, spent on the three steps, are illustrated in Figure 33 (processor with 1,6 GHz,
504 MB RAM). Eight constructed isolates were identified as new sequence types .
This comes from inconsistencies in the contigs . In conclusion, the inspection of the
resulted contigs by the user is part of the workflow and cannot be automated. The
user can use low quality reads, then, the expenditure of time will increase, since it
causes more manual inspections.

The result of the the evaluation with the trace data shows that the amount of
time, spent on the update, is below the non-functional performance requirement of
1 second.

63 MLST

7.3 User acceptance 7 RESULTS

7.3 User acceptance

The concept of the CLC MLST Module and a beta version of the software were pre-
sented to possible customers on the “17th European Congress of Clinical Microbiol-
ogy and Infectious Diseases” and the “25th International Congress of Chemotherapy”
in Munich. The software was well received.

MLST 64

8 DISCUSSION

8 Discussion

The aim of this project was to develop a plug-in for the software solution of CLC bio
[6], performing multilocus sequence typing . The result is the CLC MLST Module,
which is a user-friendly solution for rapid typing with multilocus sequence typing
and managing the acquired data.

The following items describe future prospects, pointing out the subsequent steps for
enhancing and improving the CLC MLST Module.

Performance

Performance reduction, caused by memory leaks, are tried to be eliminated. Profiling
was done and the performance increased. However, it seems that the software’s
performance is not reached, yet. Therefore one task for the future is another profiling
of the CLC MLST Module.

More automation

The system could have more automation for rapid typing. The workflow enhances
the typing, however, the user has to manually select the sequences for each isolate.
If the user saves the sequences in a defined order, the system could import and
assign the sequences itself.

Multilocus sequence analysis

In Figure 2, the phases of an MLST project are described. The preparation and
data collection is handled in laboratories. The second phase, the multilocus sequence
typing can be achieved by using the CLC MLST Module. The last phase, the multi-
locus sequence analysis , can be performed with functionality of the CLCWorkbench.
However, useful clustering methods like eBURST [28, 29, 30] and BURP [31] are
not implemented for the CLC MLST Module, yet.

Download from more databases

The download functionality is restricted to the download from PubMlst [1] for now.
The implementation of this download is developed with an abstract concept, in order
to facilitate the import of other databases, like the SpaServer [11]. Next development
steps could include the download of more databases.

Submission

The feature of submission of data to public databases was not implemented. At the
time of this thesis, the submission for the PubMlst [1] database was restructured.
The user is able to submit data by using the online form or email. Thus, the

65 MLST

8 DISCUSSION

feature was postponed. In order to fulfill the functionality of the entire workflow of
multilocus sequence typing , the easy submission of data should be implemented.

SOAP

SIMPLE OBJECT ACCESS PROTOCOL (SOAP) is a protocol, intended for ex-
changing information in a distributed system using XML technologies. At the time
of this thesis, Keith A. Jolley used this protocol for building an API (Application
Programming Interface) for the PubMlst [1] database. This API provides functions
for querying the MLST databases at PubMlst. For future prospects this functions
could be included into the CLC MLST Module software. There are functions avail-
able for typing sequences, which could substitute the typing functionality of the
CLC MLST Module. However, the CLC MLST Module gives the opportunity of
changing, extending and managing MLST related data as well as being faster than
a protocol-based typing procedure. Time plays a major role in the dynamic updates
of the isolates . Therefore the SOAP API can be an extension in the CLC MLST
Module, but will not replace the developed functionalities.

MLST 66

9 CONCLUSION

9 Conclusion

The CLC MLST Module is a versatile solution for Multilocus sequence typing with
focus on usability, the typing workflow and maintenance of MLST data. The rapid
typing with MLST is improved and the managing of MLST related data is facili-
tated.

The first version of the CLC MLST Module was released (CLC MLST Module 1.0
[7]) and it indicates to be an efficient and stable software solution for multilocus
sequence typing .

67 MLST

10 References

10 References

[1] Keith A. Jolley. PubMlst website - Publicly-accessible MLST databases.
http://pubmlst.org.

[2] M. C. Maiden, J. A. Bygraves, E. Feil, G. Morelli, J. E. Russell, R. Urwin,
Q. Zhang, J. Zhou, K. Zurth, D. A. Caugant, I. M. Feavers, M. Achtman, and
B. G. Spratt. Multilocus sequence typing: a portable approach to the
identification of clones within populations of pathogenic microorganisms. Proc
Natl Acad Sci U S A, 95(6):3140–3145, Mar 1998.

[3] D. M. Hacek, T. Suriano, G. A. Noskin, J. Kruszynski, B. Reisberg, and L. R.
Peterson. Medical and economic benefit of a comprehensive infection control
program that includes routine determination of microbial clonality. Am J Clin
Pathol, 111(5):647–654, May 1999.

[4] Aparajita Singh, Richard V Goering, Shabbir Simjee, Steven L Foley, and
Marcus J Zervos. Application of molecular techniques to the study of hospital
infection. Clin Microbiol Rev, 19(3):512–530, Jul 2006.

[5] George M. Garrity, editor. Bergey’s Manual of Systematic Bacteriology.
Springer-Verlag, second edition, 2005.

[6] CLC bio - Bioinformatics solutions. http://www.clcbio.com/. CLC bio
provides software solutions for bioinformatics.

[7] CLC bio - CLC MLST Module. www.clcbio.com/mlst. The CLC MLST
Module is a plug-in for performing multilocus sequence typing.

[8] John W Taylor and Matthew C Fisher. Fungal multilocus sequence typing–it’s
not just for bacteria. Curr Opin Microbiol, 6(4):351–356, Aug 2003.

[9] Phaedra Agius, Barry Kreiswirth, Steve Naidich, and Kristin Bennett. Typing
staphylococcus aureus using the spa gene and novel distance measures.
IEEE/ACM Trans Comput Biol Bioinform, 4(4):693–704, 2007.

[10] H. M. Frénay, A. E. Bunschoten, L. M. Schouls, W. J. van Leeuwen, C. M.
Vandenbroucke-Grauls, J. Verhoef, and F. R. Mooi. Molecular typing of
methicillin-resistant staphylococcus aureus on the basis of protein a gene
polymorphism. Eur J Clin Microbiol Infect Dis, 15(1):60–64, Jan 1996.

[11] SpaServer. http://www.seqnet.org/. SpaServer contains data for spa-typing of
Staphylococcus aureus.

[12] Tamara Revazishvili, Mamuka Kotetishvili, O. Colin Stine, Arnold S Kreger,
J. Glenn Morris, and Alexander Sulakvelidze. Comparative analysis of
multilocus sequence typing and pulsed-field gel electrophoresis for
characterizing listeria monocytogenes strains isolated from environmental and
clinical sources. J Clin Microbiol, 42(1):276–285, Jan 2004.

MLST 68

10 References 10 References

[13] Mamuka Kotetishvili, O. Colin Stine, Yuansha Chen, Arnold Kreger,
Alexander Sulakvelidze, Shanmuga Sozhamannan, and J. Glenn Morris.
Multilocus sequence typing has better discriminatory ability for typing vibrio
cholerae than does pulsed-field gel electrophoresis and provides a measure of
phylogenetic relatedness. J Clin Microbiol, 41(5):2191–2196, May 2003.

[14] Mamuka Kotetishvili, O. Colin Stine, Arnold Kreger, J. Glenn Morris, and
Alexander Sulakvelidze. Multilocus sequence typing for characterization of
clinical and environmental salmonella strains. J Clin Microbiol,
40(5):1626–1635, May 2002.

[15] Crystal N Johnson, William H Benjamin Jr, Stephen A Moser, Susan K
Hollingshead, Xiaotian Zheng, Marilyn J Crain, Moon H Nahm, and Ken B
Waites. Genetic relatedness of levofloxacin-nonsusceptible streptococcus
pneumoniae isolates from north america. J Clin Microbiol, 41(6):2458–2464,
Jun 2003.

[16] S. J. Peacock, G. D I de Silva, A. Justice, A. Cowland, C. E. Moore, C. G.
Winearls, and N. P J Day. Comparison of multilocus sequence typing and
pulsed-field gel electrophoresis as tools for typing staphylococcus aureus
isolates in a microepidemiological setting. J Clin Microbiol, 40(10):3764–3770,
Oct 2002.

[17] Sreedhar R Nallapareddy, Ruay-Wang Duh, Kavindra V Singh, and
Barbara E Murray. Molecular typing of selected enterococcus faecalis isolates:
pilot study using multilocus sequence typing and pulsed-field gel
electrophoresis. J Clin Microbiol, 40(3):868–876, Mar 2002.

[18] S. Sreevatsan, X. Pan, K. E. Stockbauer, N. D. Connell, B. N. Kreiswirth,
T. S. Whittam, and J. M. Musser. Restricted structural gene polymorphism
in the mycobacterium tuberculosis complex indicates evolutionarily recent
global dissemination. Proc Natl Acad Sci U S A, 94(18):9869–9874, Sep 1997.

[19] David Aanensen. MLST.net website. www.mlst.net.

[20] Mark Achtman. MLST Databases at the Max Planck Institute for Infection
Biology. http://web.mpiib-berlin.mpg.de/mlst/.

[21] Keith A Jolley, Man-Suen Chan, and Martin C J Maiden. mlstdbnet -
distributed multi-locus sequence typing (mlst) databases. BMC
Bioinformatics, 5:86, Jul 2004.

[22] The Staden package. http://staden.sourceforge.net/.

[23] R. Staden. The staden sequence analysis package. Mol Biotechnol,
5(3):233–241, Jun 1996.

[24] Keith A. Jolley. Sequence Type Analysis and Recombinational Tests Version 2
(START2). http://pubmlst.org/software/analysis/start2/.

[25] Man-Suen Chan and Nicki Ventress. STARS software.

69 MLST

10 References 10 References

http://neelix.molbiol.ox.ac.uk:8080/userweb/mchan/stars/. STARS is an
alternative interface to staden for sequence assembly for sequence typing
projects.

[26] Applied Biosystems. http://www.appliedbiosystems.com. SeqScape software
is used for MLST.

[27] James Gosling, Bill Joy, and Guy L. Steele. The Java Language Specification.
Addison-Wesley Longman, 3rd edition, 2005. ISBN-10: 0321246780 ISBN-13:
978-0321246783.

[28] Edward J Feil, Bao C Li, David M Aanensen, William P Hanage, and Brian G
Spratt. eburst: inferring patterns of evolutionary descent among clusters of
related bacterial genotypes from multilocus sequence typing data. J Bacteriol,
186(5):1518–1530, Mar 2004.

[29] Brian G Spratt, William P Hanage, Bao Li, David M Aanensen, and
Edward J Feil. Displaying the relatedness among isolates of bacterial species –
the eburst approach. FEMS Microbiol Lett, 241(2):129–134, Dec 2004.

[30] Katherine M E Turner, William P Hanage, Christophe Fraser, Thomas R
Connor, and Brian G Spratt. Assessing the reliability of eburst using
simulated populations with known ancestry. BMC Microbiol, 7:30, 2007.

[31] Alexander Mellmann, Thomas Weniger, Christoph Berssenbrugge, Jorg
Rothganger, Michael Sammeth, Jens Stoye, and Dag Harmsen. Based upon
repeat pattern (burp): an algorithm to characterize the long-term evolution of
staphylococcus aureus populations based on spa polymorphisms. BMC
Microbiol, 7(1):98, Oct 2007.

[32] Anca Andrei and Marcus J Zervos. The application of molecular techniques to
the study of hospital infection. Arch Pathol Lab Med, 130(5):662–668, May
2006.

[33] R. Guerrero. Bergey’s manuals and the classification of prokaryotes. Int
Microbiol, 4(2):103–109, Jun 2001.

[34] M. Hartung. Epidemiologische Situation der Zoonosen in Deutschland im
Jahr 2005 - Übersicht über die Meldungen der Bundesländer. Bundesinstitut
für Risikobewertung, 2007. ISBN 3-938163-25-9, ISSN 1614-3795.

[35] David Livermore. The zeitgeist of resistance. J Antimicrob Chemother, 60
Suppl 1:i59–i61, Aug 2007.

[36] Martin C J Maiden. Multilocus sequence typing of bacteria. Annu Rev
Microbiol, 60:561–588, 2006.

[37] Lance R Peterson and Stephen E Brossette. Hunting health care-associated
infections from the clinical microbiology laboratory: passive, active, and
virtual surveillance. J Clin Microbiol, 40(1):1–4, Jan 2002.

MLST 70

10 References 10 References

[38] Larry Snyder and Wendy Champness. Molecular Genetics of Bacteria (Second
Edition). ASM Press, 2003.

71 MLST

Appendices

MLST 72

A PUBMLST DOWNLOAD - DBASE.XML

A PubMlst download - dbase.xml

The download of MLST schemes is composed of downloading sequence files (fasta
formatted), a profiles (tab delimited) file and additional information, like the version.
The following part of an xml file contains all necessary information for automatically
downloading anMLST scheme of the organism “Acinetobacter baumannii”. The xml
file is provided by PubMlst [1], at http://pubmlst.org/data/dbases.xml, and is
used for the system feature of downloading MLST schemes .

<?xml version="1.0" encoding="ISO-8859-1" ?>
<data>
<species>Acinetobacter baumannii
<mlst>
<database>
<url>http://pubmlst.org/abaumannii/</url>
<retrieved>2007-12-05</retrieved>
<profiles>
<count>20</count>
<url>http://pubmlst.org/data/profiles/abaumannii.txt</url>
</profiles>
<loci>
<locus>gltA
<url>http://pubmlst.org/data/alleles/abaumannii/gltA.tfa</url>
</locus>
<locus>gyrB
<url>http://pubmlst.org/data/alleles/abaumannii/gyrB.tfa</url>
</locus>
<locus>gdhB
<url>http://pubmlst.org/data/alleles/abaumannii/gdhB.tfa</url>
</locus>
<locus>recA
<url>http://pubmlst.org/data/alleles/abaumannii/recA.tfa</url>
</locus>
<locus>cpn60
<url>http://pubmlst.org/data/alleles/abaumannii/cpn60.tfa</url>
</locus>
<locus>gpi
<url>http://pubmlst.org/data/alleles/abaumannii/gpi.tfa</url>
</locus>
<locus>rpoD
<url>http://pubmlst.org/data/alleles/abaumannii/rpoD.tfa</url>
</locus>
</loci>
</database>

73 MLST

http://pubmlst.org/data/dbases.xml

A PUBMLST DOWNLOAD - DBASE.XML

</mlst>
</species>
...

MLST 74

Glossary

B Glossary & Acronyms

Glossary

allele
Different forms of the same gene are called alleles. 6, 9, 11, 27, 30, 40, 43, 44,
48, 49, 51, 54, 55, 75, 77, 80, 81

allele type
An allele type is a specific sequence of a gene fragment in a MLST scheme.
Every allele type has its unique number. 6, 9, 11, 16, 17, 36, 55, 75–77

antibiotic
A chemical that inhibits the growth of an organism. It is used against infectious
agents. 4, 75

assembly
A method to join fragments of sequences in order to create one sequence, the
consensus sequence. 14, 17, 29, 75, 79

CLC MLST Module
The CLC MLST Module is a plug-in for CLC Workbenches (DNA and Com-
bined Workbench). It provides functionality for multilocus sequence typing . 1,
25–27, 40, 45–50, 53, 55, 62, 63, 65–67, 75, 80, 81

contig
The contig (contiguous) represents overlapping DNA fragments originated
from a single genetic source. 17, 28, 29, 36, 40, 41, 43, 51–53, 62, 63, 75,
78, 80

cross-platform
Programming languages or applications, which are cross-platform, can be used
on different platforms, like Windows and Linux. 19, 20, 24, 75

Feature Driven Development
Feature Driven Development is a iterative software development process and
a agile method. 21, 23, 75, 78, 80

genome
The DNA molecules that contain the genes for cellular growth, maintenance
and metabolism, all the information to make a new organism or virus. 6, 9,
75, 76

genotype
Sequence of the DNA of an organism. If two organisms are genetically identical
to each other they have the same genotype. 6, 75, 76

75 MLST

Glossary Glossary

genotypic
see genotype. 4, 8, 9, 75

housekeeping gene
A housekeeping gene encodes proteins, necessary for the basic maintenance,
core functions and metabolism of a cell. It is constitutively expressed, that
means the expression of the gene is not regulated. 1, 75, 76

isolate
Pure culture of a bacterial species. 1–4, 6, 9, 11, 14, 16, 21, 25, 28–30, 35–38,
40, 42–44, 47, 50–55, 57–59, 62, 63, 65, 66, 75, 76, 79–81

Java
Java is an object-oriented programming language. 24, 27, 40, 75, 76

JUnit
JUnit is a framework for implementing unit tests with Java. 24, 75

locus
A region in the genome of an organism. 6, 8, 9, 12, 17, 75–77, 79

MLST scheme
AMLST scheme defines the number and lengths of the loci to type an organism
with MLST . It contains allele types , sequence types , the profiles , as well as
sequences. 6, 8–12, 21, 25, 27–30, 32–36, 38, 40, 42–45, 48–57, 59–61, 63, 73,
75, 77, 79–81

multilocus enzyme electrophoresis
A typing technique. Encoded proteins of an organism are used to detect
enzyme polymorphisms on basis of differing electrophoretic mobilities of those
proteins on a gel. 8, 75, 78

multilocus sequence analysis
Analyses based on the data used with MLST are called Multilocus sequence
analysis . 6, 7, 14, 17, 21, 25, 65, 75, 76, 78, 79

multilocus sequence typing
A typing method to distinguish different isolates of a microorganism. Multi-
locus means that up to 11 loci of an isolate are used to determine a sequence
type. Fragments of those loci are compared and arbitrarily numbers are given
to alleles, the allele types . The difference of more than one nucleotide gives a
new allele type. The combination of allele types of the loci gives the sequence
type. 1, 2, 6, 7, 14–19, 21, 25, 29, 40, 53, 62, 65–67, 75, 77–79

phenotype
All observable properties of an organism. 75, 77

MLST 76

Glossary Glossary

phenotypic
see phenotype. 4, 8, 9, 75

Polymerase chain reaction
A method of molecular biology to exponentially copy a fragment of a sequence
in vitro (outside of an organism). 6, 14, 75, 78

profile
The profile is a combination of numbers for genes in a MLST scheme, which
represents the sequence type. Every gene is associated with a number and this
number links to a sequence in the MLST scheme, the allele sequence. The
profile was developed by reason of human readability. 9, 11, 12, 27, 28, 43, 44,
54, 59, 75, 76, 79–81

pulsed-field gel electrophoresis
A typing technique. Rare-cutting restriction enzymes are used to get several
fragments of a chromosomal DNA sequence. Those fragments are separated on
an agarose gel with periodically changing the direction of the electrical field.
8, 75, 78

sequence type
A sequence type is a specific arrangement of allele types , a specific sequence
in all loci of a MLST scheme. Every sequence type has its unique number. 6,
11, 12, 14–17, 20, 27, 28, 35, 36, 44, 51, 52, 54, 55, 59, 63, 75–77, 79, 81

singlelocus sequence typing
Same principle as multilocus sequence typing , however, just one locus is used
in this typing method. 8, 75, 77

Spa-typing
Spa-typing is a rapid singlelocus sequence typing method of the organism
Staphylococcus aureus (also MRSA). There is a gene called “spa” in MRSA
which is used for typing. 8, 75

strain
A variant of an organism. 75

Test Driven Development
The test-driven development is a software development technique. The imple-
mentation of new code or a new feature starts with implementing tests. After
implementing the tests the code is implemented. Only if the tests succeed, the
new code or feature is accepted. The code is refactored and the cycle starts
again with new code. All tests, also tests of other features, have to succeed on
every end of a cycle. 22–24, 75, 79, 80

trace
The term “trace” is applied for sequence data quality in this thesis. Automated
DNA sequencing instruments use fluorescently labelled samples resulting in

77 MLST

Acronyms Acronyms

fluorescent peak trace chromatograms. Two sequences, with their trace data
attached, are shown in the contig of the Figure 6.. 11, 63, 75, 81

typing
Typing means to

• characterize an organism

• distinguish between different isolates of an organism

. 3, 18, 21, 28–31, 36, 37, 39, 42, 52, 63, 75, 80

Acronyms

bp
base pair. 9, 75

DNA
Deoxyribonucleic acid. 1, 4, 6, 8, 14, 21, 63, 75, 77

FDD
Feature Driven Development . 21–23, 75, 80

kbp
kilo base pairs. 8, 75

MLEE
Multilocus enzyme electrophoresis . 8, 9, 75, 82

MLSA
Multilocus sequence analysis . 75

MLST
Multilocus sequence typing . 1, 2, 6–9, 14, 18, 19, 25, 27, 29, 39, 62, 63, 65–67,
75, 76, 79, 82

MRSA
Methicillin-resistant Staphylococcus aureus. 8, 75, 77

PCR
Polymerase chain reaction. 14, 75

PFGE
Pulsed-field gel electrophoresis . 8, 9, 75, 82

RNA
Ribonucleic acid. 4, 75

MLST 78

C List of Figures

SOAP
Simple Object Access Protocol. 66, 75

ST
Sequence type. 11, 12, 75, 79

TDD
Test Driven Development . 22, 23, 75, 80

C List of Figures
1 CLC bio’s solutions

Main segments of CLC bio’s [6] offers are software, consulting and
high performance computing. The software segment is made up of
solutions like the Combined (yellow), Protein (green), DNA (blue)
and RNA (purple) Workbench, as well as the Software Developer Kit
(golden) and the Plug-ins (black), as at November 2007. 5

2 Overview of work regarding MLST . The result of the preparation
step and multilocus sequence typing will be added to a database and
is stored for more analyses, the Multilocus sequence analyses 7

3 Example of some data of a MLST scheme, the Staphyloccocus aureus
from Mlst.net [19]. 10

4 The connection between the profile and sequences is shown in this
figure. Every number in the profile represents a sequence in the same
MLST scheme. The combination of the numbers makes up a sequence
type. All isolates of same sequence type must have the same sequence
in every locus . The sequence type box contains a circular illustra-
tion of a bacterial chromosome, which comprises the sequences of an
organism of ST 8. 12

5 Online available PubMlst’s sequence type query for organism Strep-
tococcus uberis: Figure 5a is showing the input form where you enter
the sequences. Figure 5b is an example result. It is the query result
if the input sequences are from a sequence type 1 isolate. 15

5 (Continued) Online available PubMlst’s sequence type query for or-
ganism Streptococcus uberis: Figure 5c is an example result. It is
an isolate, which did not match with a sequence type in the database
and probably is a new sequence type. 16

6 A contig: The assembly of two sequences (forward read and backward
read)is shown. The result is the consensus sequence, which is used
for further analyses. 17

7 Overview of work regarding MLST . Contrary to Figure 2 the tasks
are red which can easily be performed automatically. 18

8 The Feature Driven Development software process. Source: Nebulon
Pty. Ltd. 22

79 MLST

C List of Figures C List of Figures

9 FDD-TDD approach of this project. The “Build by feature” process
of Feature Driven Development is extended with Test Driven Develop-
ment . Every feature implementation starts with implementing tests.
After finishing the tests, the functionality can be implemented. The
tests have to succeed, before passing over to refactoring. The “Build
by feature” step is iterative, that means the feature can be partitioned
before the implementation starts. 23

10 A data flow diagram, representing the overall features, which will be
integrated in the CLC MLST Module. Arrows represent data flow,
circles imply features. The “User” is an interface and the “MLST data
file” the data storage. 26

11 An overall class diagram of the most important classes in the CLC
MLST Module . 27

12 Use case of system feature “Typing workflow”. Main actors are the
user and the system. The subsystem ’Typing’ represents the main
funtionality for typing . 31

13 Use case of system feature “Create MLST scheme”. 32

14 Use case of system feature “Download MLST scheme”. 33

15 Use case of system feature “Merge MLST schemes”. 34

16 Use case of system feature “Extend MLST scheme” 36

17 Use case of system feature “Extend Isolate”. The subsystem “Typing”
of the system feature “Typing workflow” in Section 5.6.2, Page 29, is
reused. 37

18 Use case of system feature “Submission of data”. 39

19 Data classes introduced with the MLST module. Some classes like
the Contig and the SequenceList have already been introduced with
the CLC bio software and are reused for the MLST module project. . 41

20 Activity diagram of the automatic assignment 42

21 This activity diagram visualises the algorithm for the determina-
tion of the allele profile. The first iteration (green) gets the se-
quences for each gene of the isolate. This sequence can come from a
contig object or from a sequence object. This sequence is then com-
pared to allele sequences of the MLST scheme in the second iteration
(blue). If the sequence matches with an allele sequence of the MLST
scheme the profile number of the allele sequence is fetched and as-
signed to the isolate’s sequence. If there is no match the isolate’s
sequence is a new allele sequence. The combination of the numbers
determined in this algorithm represents the profile of the isolate. . . . 43

MLST 80

C List of Figures C List of Figures

22 The activity diagram shows the determination of a list of possi-
ble sequence types, the typing algorithm. As soon as the profile
of the isolate contains an entry with a negative number (this indi-
cates a new allele type), the sequence type list will be extended with
an entry of a ’New sequence type’. The isolate profile is compared to
the entries of the profile list of the referenced MLST scheme. If the
profile entries match, the sequence type of the MLST scheme’s profile
entry is determined and added to the sequence type list. Not assigned
gene entries of the isolate will match with every entry, so the user
gets a list of possible sequence types 44

23 Dialog windows of the action “Assembly and Create Isolate” are shown
by screenshots of the CLC MLST Module 1.0. The selection of the
input objects (23a) is the first step. Afterwards, the MLST scheme,
input parameters for the alignment and the trimming can be set (23b). 45

23 (Continued) Dialog windows of the action “Assembly and Create Iso-
late” are shown by screenshots of the CLC MLST Module 1.0. The
Figure 23c reveals the automatic assignment of a gene. Users have
the option of opening or saving the result immediately (Figure 23d). 46

23 (Continued) Dialog windows of the action “Assembly and Create Iso-
late” are shown by screenshots of the CLC MLST Module 1.0. The
Isolate object comprises results and parameters of the action. 47

24 Dialog windows of the action “Create MLST scheme” are shown by
screenshots of the CLC MLST Module 1.0. 49

25 The download dialog window of the CLC MLST Module is shown
in this figure. Some of the available organisms of PubMlst [1] are
represented within the screenshot. 50

26 The automatic update dialog window is activated with opening an
isolate and differing versions of the isolate and its referenced MLST
scheme. 54

27 History entries are shown in a history view in every object in the CLC
Workbench. This is a MLST scheme representing some changes. . . 56

28 The main view of the Isolate object. All assigned objects are shown
for the genes as well as the referenced MLST scheme. 57

29 This figure represents the view of all collected informations of the
typing for this isolate, the Isolate report view. 58

30 This figure represents the view of a MLST scheme object with its
allele sequences in tables. 60

31 This view of a MLST scheme shows the profiles contained in the
object. 61

32 Mlst workflow. This figure shows the difference of time spent for
typing an isolate with the CLC MLST Module and an online form,
e.g. PubMlst [1]. 62

33 Evaluation of trace files, provided by PubMlst [1], for organism Strep-
tococcus uberis. 63

81 MLST

D List of Tables

D List of Tables
1 Most commonly used typing techniques in molecular biology. At-

tributes, explained in Section 2.3, are compared of MLST , MLEE
and PFGE . 9

2 Public available databases with organisms as at end of October 2007. 13

MLST 82

	Summary
	Introduction
	Form and content of the thesis
	Background
	Typing
	Phenotypic method
	Genotypic method

	CLC bio

	Multilocus sequence typing
	Introduction
	Singlelocus sequence typing
	Comparison to other typing methods
	Multilocus enzyme electrophoresis (MLEE)
	Pulsed-field gel electrophoresis (PFGE)

	MLST scheme
	Sequences
	Profiles

	Public databases
	PubMlst
	Profiles databases
	Isolates databases

	Workflow
	Preparation
	Multilocus sequence typing
	Multilocus sequence analysis

	Development
	Motivation of the work
	Aim of the work
	Existing solutions
	Online form
	Open source software / Freeware
	Applied Biosystems

	End-user and product analysis
	Software development process
	Feature Driven Development (FDD)
	Test Driven Development (TDD)
	FDD-TDD approach

	Java
	JUnit
	CLC bio's Software Developer Kit

	Requirements specification
	Purpose
	Scope
	Product perspective
	Product features
	User classes and characteristics
	Overview
	Detailed model

	System features
	Features list
	Typing workflow
	Create MLST scheme
	Download MLST scheme
	Merge MLST schemes
	Extend MLST scheme
	Extend Isolate
	Submission of data

	Non-functional requirements
	Performance requirements
	Software Quality Attributes

	Realization/Implementation
	Persistence
	System features
	Typing workflow
	Create MLST scheme
	Download MLST scheme
	Merge MLST scheme
	Extend MLST scheme
	Extend Isolate
	Submission of data

	Additional features
	Automatic update
	Popup menus in views
	History
	Undo/Redo

	Graphical user interface
	History view
	Isolate editors and views
	MLST scheme editors and views

	Results
	Overall evaluation
	Detailed evaluation
	User acceptance

	Discussion
	Conclusion
	References
	Appendices
	PubMlst download - dbase.xml
	Glossary & Acronyms
	List of Figures
	List of Tables

