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1 Summary
Protein annotation in UniProtKB/TrEMBL is poor, however this is the largest and fastest growing 

part of the Universal Protein Knowledgebase (UniProtKB), and the sequence database group at the 

EBI aims to automatically enrich the information contained in it. For this purpose knowledge is 

extracted  out  of  UniProtKB/Swiss-Prot,  the  manually  curated  and  well  annotated  part  of 

UniProtKB, and applied to TrEMBL. Over the last eight years, automatic annotation of different 

protein attributes such as Keywords, comments and features have been successfully implemented. 

This thesis investigates machine learning techniques on Gene Ontology (GO) terms in UniProtKB 

based on the existing methods and also some new approaches. Spearmint, the Decision Tree (DT) 

algorithm designed by E. Kretschmann [1] for Keyword prediction was tested and found to perform 

unsatisfactorily on GO term prediction. A first attempt to improve GO term prediction was a simple 

mapping of Swiss-Prot Keywords to GO terms. The same algorithm was also applied to an InterPro 

to GO mapping. This mapping, using Bayes's conditional probabilities for rule generation, already 

lead to a significant improvement in comparison to the Decision Tree approach, but also left room 

for further refinement. Since manual GO annotation in Swiss-Prot provides a much less complete 

information base than for Keywords and other attributes, another idea to solving the problem was to 

enrich  the  database  with  additional  GO  terms  without  changing  the  original  meaning  of  the 

annotation. Due to missing negative associations, no machine learning algorithm can successfully 

be applied to UniProtKB GO terms. Hence a further step during the enrichment process was to find 

as reliable as possible GO term exclusions. That way enriched proteins were then again fed into the 

existing Decision Tree.

Despite some slight improvements in comparison to the original Spearmint run due to the positive 

enrichment, the results were still not satisfactory. The negative search did not produce a sufficient 

number of true negative classifications. Hence GO data in Swiss-Prot has turned out to be more 

difficult to use in automatic annotation than expected.
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2 Introduction

2.1 Background
As  more  and  more  biological  sequence  data  are  produced  automatically  from high-throughput 

experiments,  the  number  of  entries  in  databases  like  the  Universal  Protein  Knowledgebase 

(UniProtKB) is increasing rapidly. For example the number of entries in UniProtKB has increased 

by 7% (237,288  new entries)  during  the  short  time  period  between  two  releases  (9.4  on  26 th 

December  2006  and  9.6  on  6th February  2007).  Unfortunately  most  records  retrieved  from 

automated processes lack annotations. The fraction of well annotated or manually curated entries in 

protein or gene databases is decreasing at a speed directly proportional to the increasing number of 

protein sequence submissions. UniProtKB is a central database containing protein sequences and 

providing accurate, consistent and rich sequence and functional information where available. It is a 

union of the Swiss-Prot and TrEMBL datasets and currently contains 3,766,477 protein sequence 

entries1. High quality records are found in the Swiss-Prot part which holds 252,616 (~7% of the 

1 Figures for UniProtKB Release 9.4 from 26th of December 2006
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Figure 2.1: Database growth since beginning of 2004. Data out of UniProtKB release notes 1.0 to 9.7
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UniProtKB  total)  records  with  information  extracted  from  literature  and  curator-evaluated 

computational  analysis. Most  of these entries are completely annotated. But the second and far 

greater part, i.e. UniProtKB/TrEMBL, holds 3,513,861 (~93% of UniProtKB total) records, which 

are  only  computationally  analysed.  While  awaiting  manual  curation  and  incorporation  into 

UniProtKB/Swiss-Prot,  they  are  enriched  with  automatic  annotation  and  classification,  but 

annotation is largely incomplete [2, 3, 4, 5]. Figure 2.1 visualises the development of both parts of 

UniProtKB  over  the  past  few  years  and  shows  the  slow  increase  in  manually  curated  entries 

(UniProtKB/Swiss-Prot)  and  the  steep  increase  of  automatically  annotated  protein  entries 

(UniProtKB/TrEMBL).

UniProtKB provides a broad range of information about proteins. Annotations describe areas such 

as the function(s) of the protein, post translational modification(s), domains and sites, and secondary 

structure. An example of a Swiss-Prot entry can be found in Appendix A. Entries are divided into 

several topics/fields, describing the sequence in general, its organism origin, literature references 

and function, as well as database cross-references. Functional descriptions in this context are for 

example Keywords, features, comments and also GO terms:

• Swiss-Prot Keywords (KW) is a controlled vocabulary which is divided into 10 domains. 

There are 892 distinct Keywords describing the biological functions, cellular components 

and molecular processes of entries as well as diseases, coding sequence diversities, technical 

terms,  developmental  stages,  post  translational  modifications,  domains  and  ligands  of 

proteins.

• The feature table (FT) describes regions or sites of interest in the sequence. In general the 

feature table lists post translational modifications, binding sites, enzyme active sites, local 

secondary structure or other characteristics reported in the cited references such as natural 

variants or isoforms.

• Comments  (CC)  are  largely  free  text  additions  to  an  entry  and  contain  further  useful 

information  about  a  protein.  They  are  arranged  into  27  “topics”  including  function, 

developmental stage, tissue specificity, similarity and interaction.

• GO terms,  the subject  of  this  thesis,  are arranged in a controlled vocabulary, similar  to 

Keywords.  The  22,929  distinct  terms  are  divided  into  three  domains  describing  the 

molecular process(es), cellular component(s) and biological function(s) of gene products. In 

contrast  to  Keywords  however,  GO terms  are  arranged  in  a  complex  hierarchy.  In  the 

UniProtKB record they are found as database cross-references. More details about GO terms 

will be given later in this work.
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As mentioned before, Swiss-Prot and TrEMBL differ widely at the annotation level. To show this 

gap, Figure 2.2 and Table 1 visualise the distribution of the annotations named above. Each column 

shows the percentage of all Swiss-Prot or TrEMBL entries holding at least one annotation of the 

named type. In Swiss-Prot, Keywords, features and comments are present in 98% (248,623 entries), 

100% (252,616 entries) and 96% (243,681 entries) of all records respectively. In TrEMBL 72% 

(2,536,466) of the entries have Keywords, whereas only 28% (981,682 entries) show feature tables 
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Figure 2.2: Annotated entries in UniProtKB/Swiss-Prot and UniProtKB/TrEMBL 
as a percentage of all Swiss-Prot or TrEMBL entries respectively. IEA is short for  
”Inferred from Electronic Annotation”.
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Table 1: Distribution of annotated entries in UniProtKB/Swiss-Prot and 
UniProtKB/TrEMBL as absolute values and percentage of all Swiss-Prot or TrEMBL entries 
respectively. IEA is short for ”Inferred from Electronic Annotation”.

Swiss-Prot TrEMBL
absolute percentage absolute percentage

Keywords 248,623 98% 2,536,466 72%
Feature Table 252,616 100% 981,682 28%
Comments 243,681 96% 1,037,020 30%

105,301 42% 2,070,472 59%
GO Terms (non-IEA) 33,624 13% 37,260 1%
All Proteins 252,616 100% 3,513,861 100%

GO Terms (incl. IEA)
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and 30% (1,037,020 records) have comments. As per release statistics of TrEMBL and Swiss-Prot, 

a typical Swiss-Prot entry contains approximately 4 comments and 7 feature annotations whereas an 

average  TrEMBL entry  has  0.4  comments  and  0.5  feature  entries.  Separate  investigations  for 

Keywords showed an average of 5 per Swiss-Prot entry and 1.5 per TrEMBL entry (see Figure 2.3). 

Concerning the high coverage of annotations in Swiss-Prot, this part of UniProtKB is predestined to 

serve as a knowledge base for diverse machine learning algorithms to enrich TrEMBL annotations 

automatically.  Note  that  the  above  figures  for  TrEMBL already include  8  years  of  automatic 

annotation work, generating most of the annotation in TrEMBL.

This leads to the main task of the data mining team in the Sequence Database (SeqDB) group at the 

European Bioinformatics Institute (EBI), who are increasing the number of annotations in TrEMBL 

using common machine learning techniques. One outcome of their work is Spearmint, a Decision 

Tree (DT)  algorithm that  helps  to  extract  knowledge found in  Swiss-Prot.  Rules  generated for 

different types of annotations are checked for consistency by a system called Xanthippe, and all 
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Figure  2.3: Average number of annotations per entry comparing Swiss-Prot and  
TrEMBL
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remaining rules are then applied to TrEMBL [6]. Automatic annotation for Keywords, features and 

comments is implemented in this way [1, 7]. However the feature annotation pipeline is not yet in 

production mode.  Figure 2.2 and  Table 1 show that automatic annotation of Keywords is simple 

since they are in a controlled vocabulary. In contrast Swiss-Prot comments, which contain free text, 

are more difficult to predict, and this is reflected in a much lower protein coverage.

For most types of annotation in UniProtKB such as Keywords, features or comments, there is no 

source declaration attached directly to the database (or the flat file), so it is difficult to trace back 

how many of these annotations are derived solely by computation, and which are manually curated. 

The target for this work, GO terms, however does include an evidence code. The “Inferred from 

Electronic Annotation (IEA)” evidence code is applied whenever a GO annotation depends directly 

on computation or automated transfer of annotations from other databases.  IEA is used when no 

curator has checked the annotation to verify its accuracy [8]. Going back to Figure 2.2 and Table 1, 

it is evident that 42% (105,301 entries) of all Swiss-Prot records have GO annotations, but only 

13% (33,624 Swiss-Prot entries) have manually added or curated GO associations. Release statistics 

for Swiss-Prot state that there are approximately 0.82 GO terms per average record  [4], 0.65 of 

which  are  manual  GO  annotations.  In  TrEMBL,  59%  (2,070,472)  of  the  entries  have  GO 

annotations, corresponding to 2.02 GO terms per entry [5]. The greater number in comparison to 

Swiss-Prot is not surprising because in TrEMBL all IEA techniques are included whereas Swiss-

Prot  only allows the  most  reliable  ones.  Only 1% (37,260 entries)  of  TrEMBL entries  contain 

manual GO annotation giving an average count per entry of 0.04 non-IEA annotations (Figure 2.3). 

The evident  gap between GO annotation  and other  annotation types is  probably caused by the 

relatively late development of Gene Ontology in the year 1998, whereas Swiss-Prot was started in 

the early 1980s.

2.2 Prior Work
The relatively high portion of GO annotated entries in TrEMBL can be explained by the work of 

GOA, the GO Annotation Team at the EBI. GOA produces a huge amount of electronically inferred 

GO annotations for TrEMBL. They also do manual GO curation resulting in a number of GO terms 

which are NOT inferred from electronic annotation in addition to integrating manual annotations 

from other databases. Most of the automatically produced annotations are based on simple mapping 

10
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tables, for example mapping Swiss-Prot Keywords or InterPro1 signatures to GO terms [10]. These 

mapping files are in part curated manually, which usually means that they are of reasonable quality 

although the number of false associations has only been counted on a very small sample set of data. 

As Camon et  al.  admit,  InterPro group affiliation  does  not  necessarily mean that  all  contained 

proteins have the same function [10]. There are some proteins that belong into a specific group but 

function differently from the other group members. Those “false positives” block an annotation of 

the specific GO term, and cause curators to turn to higher level terms. Hence those GO annotations 

inferred from an InterPro to GO mapping have to be treated with caution. Similarly, all more or less 

static mappings have to be treated with caution2. For this reason in this work only manually curated 

GO annotations will be taken into account.

Work in the field of automated protein or gene function annotation based on GO terms is not only 

conducted at the EBI. Elsewhere different approaches have been developed, mostly predicting GO 

terms for proteins based on sequence similarities. Uncharacterised sequences are searched against 

GO mapped databases and assigned GO terms of the best  hits  [11,  12]. A group at the DKFZ 

Heidelberg for example, applied Support Vector Machines (SVM) in combination with a homology 

search to transfer GO terms to unknown sequences and classify those predictions as true or false 

[13]. The system was trained on approximately 860,000 (organism wise grouped) sample sequences 

and  applied  to  Xenopus  laevis genes.  The  combination  of  multiple  classification  results  (each 

organism set provided one classifier) produced predictions for about 50% of the Xenopus entries as 

well as a confidence value for each prediction. Predictive rule models were developed by Hvidsten 

and  his  group  based  on  microarray  hybridisation  experiments  [14].  The  supervised  learning 

methodology predicted 647 terms based on fibroblast response data for 517 genes. These attempts to 

predict GO terms, however, neglected the information contained in the hierarchical structure of GO 

and an approach taking the relations between GO terms into account was used by Barutcuoglu et al. 

[15].They started from protein interaction data, microarray expression data, collocalisation datasets 

and transcription factor binding sites to train multiple SVMs. The hierarchy of GO was introduced 

afterwards  when  a  Bayesian  Network  was  applied  to  verify the  consistency of  the  predictions 

produced  .  This  approach  showed  some  improvements  over  mere  machine  learning.  Frederick 

Roth's research group provided an approach using existing GO annotations and therefore not based 

on sequence similarity data and including the hierarchical structure of GO [16]. Using the FlyBase 

and Saccharomyces Genome Database (SGD) organism specific databases, they compared Decision 

1 InterPro is a database of protein families, domains and functional sites in which identifiable features found in 
known proteins can be applied to unknown protein sequences [9].

2 mapping tables are checked and altered in response to user feedback but are not continuously adapted.
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Trees and Bayesian Networks for the prediction of GO terms based on coexisting annotations of 

proteins.  Attributes  were  selected  such  that  they had  no  connection  between  them in  the  GO 

hierarchy so predictions were made only on completely different branches of the GO DAG. The 

result: Decision Trees outperformed the conditional probabilities of the Bayesian Networks at low 

false positive rates. A manual assessment of the resulting 100 predictions judged 41 of them as true 

and another 42 to be plausible. 

These approaches were either only implemented for low throughput analyses and are therefore not 

applicable to UniProtKB, or were based only on sequence similarities,  which can not take into 

account knowledge involved in manual curation. Although the additional knowledge contained in 

the  complex  relationships  between  GO  terms  is  valuable  and  has  been  shown  to  improve 

predictions, the majority of the named approaches did not consider the hierarchy of Gene Ontology. 

Most approaches were also focused on a few organisms instead of providing general, organism-

independent GO annotations. One problem with GO in UniProtKB, described later in more detail, is 

that there are no negative examples. None of the named approaches addressed this problem.

2.3 What is GO?
Free text  descriptions  of  a  gene or  protein  function tend to  vary from person  to  person,  from 

database to database and from organism to organism. Natural language provides hundreds of ways 

to describe the same fact, and this makes it particularly difficult to analyse automatically. Controlled 

vocabularies and ontologies such as the Gene Ontology (GO) is one way to deal with that problem.

An Ontology, in  terms of  Artificial  Intelligence (AI),  is  meant to  explicitly specify the objects 

contained  in  it.  As  Gruber  defined  in  1995,  “an  Ontology is  an  explicit  specification  of  a 

conceptualization”  [17].  The term originates  in  philosophy and means  a  systematic  account  of 

existence and the representation of what “exists”. This is a key feature in AI systems. The set of 

existing objects  are  reflected  in  the  representational  vocabulary with  which a  knowledge-based 

program represents the knowledge about the world [17].

The Gene Ontology describes gene products and consists of three different controlled vocabularies. 

In general, controlled vocabularies aim to provide a carefully selected set of terms, which are used 

to describe things in a uniform way. Ontologies, in extension to controlled vocabularies, also define 

the relationships among those terms and represent them in a hierarchy. The intention of GO is to 

address  the  need  for  consistent  descriptions  of  the  functions  and  subcellular  location  of  gene 

products in different databases. Functional descriptions should be uniform and comparable so that 

12
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computational approaches can be applied more easily. The Gene Ontology is designed so that the 

terms provide species-independent descriptions. Hence GO terms are adequate for the annotation of 

molecular characteristics across organisms. The three domains of the Gene Ontology are Biological 

Process,  Cellular  Component  and Molecular Function.  Since GO is an ontology, GO terms are 

arranged in a complex hierarchy using two different types of relationships: “is-a” and “part-of”. GO 

also allows multiple children, as well as multiple parents, for a term [18]. The resulting directed 

acyclic graph (DAG) is exemplified in  Figure 2.4. Red arrows denote “part-of” and blue arrows 

denote “is-a” relationships between the terms. The three disjoint domains of GO are also visible. 

Within  the  cellular  component  section  of  GO,  the  term  “plasma  membrane”  is  a  child  of 

“membrane” just like “membrane part”. But the relationships to their parents are different. “Plasma 

membrane” is a “membrane” whereas the “membrane part” is obviously a part of a membrane. Both 

child terms are, per definition, more specific than the parent term. The rather normal fact of having 

multiple children does not affect the uniqueness of paths from each term to the root node, but, as the 

graph shows, allowing multiple parents for a term does. The term “membrane part” for example has 

two parental terms, “membrane” and “cell part”. Hence there may be more than one path from a 

child term to the root.

The Gene Ontology website provides more details [8] and GO terms can be browsed with tools like 

AmiGO [19].
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Figure  2.4:  Visualization  of  an  extract  out  of  the  GO hierarchy.  Note  that  the  most  
common term is at the bottom, the most specific term at the top
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2.4 GO Annotations in UniProtKB
As mentioned before, only a small fraction of entries in UniProtKB have manual GO annotation. 

The GOA team at the EBI is continuously providing manual curation for Gene Ontology terms, but 

the number of entries in UniProtKB (and particularly in TrEMBL) is increasing at such a fast pace 

that manual annotation methods cannot keep up. Most experimental  data is provided for model 

organisms due to both the used model organisms in the laboratories, and the major involvement of 

model organism databases. For this reason, GO annotation methods also focus their attention to 

those selected organisms. The graph of the distribution of GO annotations in Swiss-Prot (Figure 2.5) 

shows that  92% of  all  entries  containing manual  GO annotation  belong to  only 13 organisms. 

Whereas the remaining 8% of GO annotated entries are contributed by as many as 680 different 

species. This reflects the work of the model organism groups in the GO consortium. In addition to 

about  120,000 other organisms GOA itself  is  mainly responsible  for human, cow and chicken, 

whereas  mouse  data  is  contributed  by  the  Mouse  Genome  Institute  (MGI).  Bakers  yeast  is 

maintained by the Saccharomyces Genome Database (SGD), fission yeast originates from GeneDB, 

rat data from Rat Genome Database (RGD), FlyBase provides data for the fruit fly, WormBase for 

the roundworm, The Arabidopsis Information Resource (TAIR) is responsible for Arabidopsis data 

and  finally the  Zebrafish  Initiative  (ZFIN) provides  zebrafish  data.  By far  the  most  important 
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Figure 2.5: Distribution of organisms across database entries containing GO annotations in Swiss-Prot.
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organisms in the graph shown are human and mouse,  which account  for  more than half  of  all 

manual GO annotations in Swiss-Prot. This examination is based on absolute numbers of entries in 

Swiss-Prot. The universe in this case consists of only those entries containing at least one manual 

GO annotation.

Absolute numbers of records, however, do not reflect the number of records per organism, which 

correlates with the proteome size of each species. So the question is, how do GO annotations cover 

all recorded entries of an organism in UniProtKB? The percentages of Swiss-Prot entries containing 

manual GO annotations out of all records per organism are shown in  Figure 2.61. The organisms 

responsible for the major part of all GO annotated records in Swiss-Prot are marked in ruby. They 

are  distributed  over  the  whole  range  of  coverages.  For  example  the  popular  model  organism 

Arabidopsis  thaliana (Mouse-ear  cress)  has  a  coverage  of  only  7%  even  though  it  contains 

annotations from a model organism database. The maximum coverage of organism-specific proteins 

in  Swiss-Prot  is  76% for the baker's  yeast  (Saccharomyces cerevisiae).  Organisms in turquoise 

contribute only a very small absolute number of sequences to all GO-annotated proteins in Swiss-

Prot,  but  nevertheless  their  coverage  with  manual  GO annotations  based  on Swiss-Prot  entries 

varies  between  8%  and  37%  (considering  only fully  sequenced  organisms).  Organisms  whose 

genomes  are  not  yet  fully  sequenced  are  depicted  with  dashed  lines2.  For  these,  the  shown 

percentage  of  manually GO-annotated  Swiss-Prot  records  does  not  reflect  the  coverage  of  the 

complete proteome, but only their coverage in existing database entries. Considering their complete 

proteome would result in distinguishably smaller numbers. For example, all the available entries in 

UniProtKB  for  Tityus  cambridgei (an  Amazonian  scorpion),  currently  only  25  proteins,  have 

manual GO annotations. These are components of its venom which were sequenced. Since about 60 

components of this toxin were already separated by Mass Spectrometry methods  [20], the whole 

organism is assumed to have a much greater count of proteins and the coverage of its proteome 

would  be  much  smaller  than  100%.  The  graph  makes  it  clear  that  only  a  few  of  the  model 

organisms, like bakers yeast, fruit fly, fission yeast, human and mouse are covered by more than 

50% (up to 76%) with GO terms. But in other organism-specific sequence sets, even in some model 

organism sets, only about 5% have at least one GO annotation. One has to keep in mind, that this is 

only a Swiss-Prot related view, which is not reflecting genome/proteome wide GO annotation.

1 Note that organisms with less than 25 Swiss-Prot entries are not included in this graph.
2 The conclusion that they are not completely sequenced yet is drawn from their absence in Integr8. The team at 

the EBI provides a web site with easy access to integrated information about sequenced genomes and their 
corresponding proteomes. See http://www.ebi.ac.uk/integr8.
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Figure 2.6: Percentages of GO annotated proteins in all entries per organism in Swiss-Prot. 13 organisms were 
marked ruby. Those are the organisms covering 92% of all GO annotated Swiss-Prot entries. Dashed columns are from 
organisms whose genomes are not yet fully sequenced.
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To give an overview of how the situation is with respect to the whole of UniProtKB,  Figure 2.7 

shows  the  13  most  important  organisms  for  GO  annotation  in  Swiss-Prot.  The  basis  for  this 

examination are all UniProtKB records per organism. All but the African clawed frog (Xenopus 

laevis),  which  is  only currently being  GO annotated,  have  completely sequenced genomes  and 

UniProtKB contains  all  known proteins  of  those  organisms.  The  fraction  of  entries  containing 

manual GO annotations out of Swiss-Prot and TrEMBL are shown as well as the percentages of 

entries NOT containing manual GO annotations in both parts of UniProtKB. The average coverage 

of those organisms in UniProtKB with GO annotations is 22% whereas considering only Swiss-

Prot, the 13 organisms reach 35% as mean. Remarkable in this analysis is the fission yeast, which 

reaches a GO annotation coverage of 84% over all UniProtKB . Next are baker's yeast (69%) and 

the mouse (44%) followed by fruit fly (29%), rat (18%) and human (10%). Even underneath those 

lie  C. elegans (8%),  E. coli (5%),  Arabidopsis thaliana (4%), chicken (4%), cow (3%), zebrafish 

(3%) and Xenopus laevis (2%). That shows that, even within such important model organisms, only 

the yeast is more than half manually GO annotated. This is because the SGD project established a 

17

Figure  2.7:  The  13  most  important  organisms  for  manual  curated  GO  annotation  in  UniProtKB.  Each  bar  
represents all proteins of one organism (100%) in UniProtKB. Organisms are ordered by their absolute number of  
GO annotated database records in Swiss-Prot descending from the top.
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well characterised database early on (1996) [21]. Noticeable in that figure is also that for some of 

those organisms great parts of manual GO annotations are not only found in Swiss-Prot but also in 

TrEMBL.  For  mouse,  Drosophila,  roundworm  and  Arabidopsis, approximately  twice  as  many 

records (containing GO annotation) exist in TrEMBL in comparison to Swiss-Prot. This reflects that 

GOA and supporting database teams do not specifically focus on Swiss-Prot but annotate mostly 

independently.  The  philosophy  behind  the  GO  consortium  curated  annotation  datasets  is  to 

preferentially  annotate  proteins  without  any  GO  annotations  (which  are  found  mostly  in 

UniProtKB/TrEMBL) or as for GOA proteins which are specifically important in human health. In 

contrast, the distribution of records containing NO manually curated GO annotations is as  Figure

2.2 shows: TrEMBL holds many more entries, lacking GO annotations, than Swiss-Prot does.

2.5 Aims of this Work
The main aim of this diploma thesis is to investigate the methods of automatically annotating Gene 

Ontology (GO) terms in UniProtKB/TrEMBL, to complement the efforts by the GOA team. The 

approach aims to provide a general, organism-independent, prediction mechanism that simulates 

manual  annotation  as  reliably  as  possible.  Machine  learning  algorithms  on  the  basis  of  prior 

annotation algorithms, developed by the data mining group at the EBI, are therefore evaluated for 

their usefulness when applied on GO annotations. The knowledge about GO term associations is 

extracted from Swiss-Prot, taking advantage of the rich and high quality (manual) annotation there, 

with the intention of applying the resulting rules to TrEMBL. The basis of all predictions is not just 

sequence data or expression experiments, but uses a variety of (manual) annotations found in Swiss-

Prot and TrEMBL. Predictions shall therefore be based on multiple sources of protein information 

rather than focussing on single attributes,  trying to mine as much information contained in the 

database as possible. As a preparatory step, existing GO annotation will be enriched using the GO 

hierarchy  without  changing  the  original  meaning  of  the  annotation.  An  approach  to  generate 

negative GO associations is  used to achieve a more complete knowledge base for the machine 

learning  algorithms.  To  ensure  the  best  possible  results,  statistical  analysis  of  the  UniProtKB 

database  concerning  non-existing  GO  terms  is  included.  This  way,  the  problem  of  missing 

statements  about  negative  GO terms will  also  be  addressed.  Since  prior  work  showed the  GO 

hierarchy to be helpful for improving predictions, this work also evaluates the potential for taking 
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the GO hierarchy into account during rule extraction. In comparison to the mappings of the GOA 

group, the described approach takes false positive records into account and attempts to simulate 

manual annotation of protein data. The algorithm will provide information about the accuracy and 

confidence of extracted rules.

2.6 Difficulties
The introduction of machine learning algorithms raises the need for a good set of data as a learning 

base. Data from which rules are to be learned have to be consistent and preferably complete. Take a 

look for example at a given set of five entries describing people. If three of them are male, the 

conclusion for the other two is obviously that they are female. This conclusion however, is derived 

from the assumption that all of the five people were taken into account while classifying males. If 

the person who was responsible for that classification simply forgot to include the last two people, 

the conclusion that they are female no longer holds true and nobody knows if they are male or 

female.  Now  what  happens  if  one  nevertheless  tries  to  derive  rules  about  those  five  people, 

assuming that the classification was complete? A rule like “all  males have short hair” could be 

derived. But if the persons classified as females are actually also males and have long hair, these 

rules would be wrong. The quality of those rules cannot be assessed as long as the knowledge on 

which they are built is incomplete.

A similar problem occurs with GO terms in Swiss-Prot. Only 13% of all Swiss-Prot records contain 

at least one manually curated GO annotation, and it is very improbable that all the other proteins in 

that database do not have any function which could be represented in GO terms. It makes more 

sense to assume that nobody tried to add GO terms there. But knowing that makes it clear that NO 

conclusions can be derived about proteins where NO specific GO term has been added. To address 

this problem, all proteins without any GO terms were excluded from the learning set. Yet even if 

only those proteins with at least one GO annotation are selected as a training set, there is another 

problem.  There  are  over  20,000  distinct  GO  terms,  describing  Biological  Function,  Cellular 

Component and Molecular Process of a protein in great detail. It is a non trivial task to consistently 

annotate within the Gene Ontology. Also there are a lot of different curators annotating GO and 

each of them has his/her own knowledge and preferences concerning terms. Considering only one 

specific GO term out of the Biological Process domain for the moment,  there are different GO 

terms  describing  a  Molecular  Function  or  a  Cellular  Component  which  could  be  used  in 

combination. Also very often, GO terms of different granularity are applicable to a protein, so it 

19



Automatic GO Term Prediction on UniProtKB Difficulties 2.6

depends on the curator and of course the experiments or analyses carried out, as to which of those 

GO terms will be added and which will be omitted. The result is very inconsistent GO annotation in 

UniProtKB. Once again (also in the set of proteins containing only records with at least one manual 

GO annotation), not a single conclusion about a GO term NOT assigned to a protein can be made, 

even if only proteins with at least one GO annotation are examined. For this reason an algorithm to 

determine true negative GO annotations is vital to any GO prediction algorithm applied to Swiss-

Prot.

Addressing the problem of missing negative examples, however, does not yet solve the issue of 

inconsistent  and  incomplete  positive  GO annotations  in  Swiss-Prot.  As  mentioned  before,  the 

available knowledge about proteins differs and the policy of GO annotation states that only terms 

the annotating person is absolutely confident about will be included. Additionally the curated data 

of a specific protein will generally not be updated (due to the overwhelming amount of still not 

annotated data) so that experiments after the date of annotation, will not be included. These facts 

and the huge number of detailed GO terms, many of which are very similar, cause GO annotations 

to  vary in accuracy, even if  the actual  function of  two proteins is  the same.  Unlike taxonomy 

annotation, GO annotation is not complete. Taxonomic classification of a protein in UniProtKB 

always includes the entire path from the most detailed term (a specific organism in that case) to the 

root (one of the five domains of life: Archaea, Bacteria, Eukaryota, Viruses or Viroids). With GO 

terms,  however,  only the most  detailed term is  assigned to  a protein  and the path  through the 

hierarchy of Gene Ontology is not included in the annotation although curators do keep in mind this 

information during the annotation process.
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3 Methods

3.1 Spearmint on GO terms
Despite the fact that GO terms are arranged in a complex hierarchy, there is some overlap with 

Keywords in Swiss-Prot. The terms, contained in a controlled vocabulary in both cases, describe the 

Molecular  Function(s),  Biological  Process(es)  or  Cellular  Component(s)  in  which  a  protein 

normally acts  in  a human readable form. It therefore stands to  reason that  an algorithm which 

successfully predicts Keywords is also, in an adapted form, usable for GO terms. As mentioned 

before, the data mining group at the EBI has developed a machine learning process, automatically 

predicting Swiss-Prot Keywords on TrEMBL, based on knowledge filtered out of Swiss-Prot. The 

system used is a Decision Tree implementation embedded in a State Machine.

C4.5 Decision Tree
The Decision Tree algorithm is a popular machine learning concept. It aims to describe an existing 

set of objects in terms of a selected target attribute. The main idea behind it is the “Divide and 

Conquer” mechanism. The original set of objects is divided by a decision based on one attribute of 

the objects. Each subset is then again divided until every subset is uniform and holds only objects of 

one type. The quality of a Decision Tree is measured by its length, i.e. the number of levels it has. 

Therefore a good Decision Tree tries to classify all objects of the universe with as few decisions as 

possible. The example in  Figure 3.1 shows this for a set of five people. Three of them are male 

(Jack, Bert and Bob), and two are female (Anna and Maria). The task of the Decision Tree is to 

figure  out  what  distinguishes  the  male  from  the  female.  It  is  provided  with  three  attributes 

describing the people, one attribute is describing the length of their hair, one their finger nails and 

the other one tells if a person has glasses or not. A very simple algorithm randomly picks one of 

those attributes, lets say “long hair”, and divides the group of people into two subgroups, those 

persons having long hair (this branch is marked with a '+' in the graph) and those NOT having long 

hair (branch marked with a '-'). Since the first subgroup (containing Anna, Jack and Maria) is still 

not uniform, the division has to be repeated. Again picking a randomly chosen attribute, let's say 

“painted nails”, results in two more groups. This time every subset is uniformly male or female and 

the algorithm terminates. But this is not necessarily the Decision Tree describing the dataset in the 

shortest possible way. In our data for example was one attribute, the “glasses”, describing male and 

female persons on its own. The selected dataset would be divided into uniform groups by only one 

decision using this attribute. But finding the ideal Decision Tree for a set of data is a non trivial 
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problem, especially considering big datasets with many attributes. The number of possible Decision 

Trees for one dataset is finite but very large so that trying all those possibilities would take too long 

for  big  data  sets  [22].  Several  heuristic  approaches  try to  solve  this  problem by producing  a 

Decision  Tree  that  is  not  necessarily the  best  one  for  a  given dataset  but  in  general  performs 

reasonably well on real datasets. One of them is the very popular Decision Tree induction algorithm 

called ID3 [22]. It maximises the “information gain” for each decision. The attribute achieving the 

greatest information gain will be chosen for the next division of the universe. Information gain takes 

into account the relative numbers of each target type per resulting subgroup. Since all male persons 

in our small example wear glasses and the female do not, the test on attribute “glasses” has a much 

higher information gain than the test on “long hair” which results in a group containing both types 

of persons.

However, ID3 is not suitable for all datasets. One major drawback is that it can only handle binary 

attributes. But it is easy to find examples of non binary, numerical attributes. Describing people is 

for example much easier when including continuous attributes like size or weight. A quite simple 

enhancement of ID3 to address this problem is the C4.5 algorithm [23]. This sorts the objects in the 
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Figure 3.1: A simple example for a dataset and one possible (not ideal) resulting  
Decision Tree. The rule extracted here is: IF long hair AND painted nails THEN  
female

Anna, Jack, Bert, Maria, Bob

Anna, Jack, Maria Bert, Bob

Long Hair?-+

Anna, Maria Jack

+ - Painted Finger Nails?

Long hair Glasses Painted nails Female

Anna Yes No Yes Yes

Bert No Yes No No

Bob No Yes Yes No

Jack Yes Yes No No

Maria Yes No Yes Yes
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universe according to their numerical value for the current attribute and finds the best threshold to 

maximise the information gain when dividing the universe into a group with lower or equal values 

of the attribute and a group having higher values of this attribute.

Another problem all Decision Trees have in common is that of over fitting. It is possible that the 

described algorithm produces Decision Trees which describe each single object of a set in its own 

group of size one. A Decision Tree would then have many long branches instead of a rather bushy 

outline,  so  the  achieved knowledge representation  is  not  as  comprehensive as  desired.  A good 

representation of the information contained in a dataset groups similar items of the universe into as 

big as possible,  yet distinctive subsets.  The basic C4.5 algorithm can be extended to solve this 

problem in a very simple way. For reasonable Decision Trees, a minimum number of instances per 

node is introduced. Splits not fulfilling this condition will not be conducted.

An additional measurement of the quality of a tree is its classification ability. Therefore, the number 

of true and false classifications at all nodes using the training set are evaluated. But considering only 

instances the learning process the tree was based on, does not necessarily represent the behaviour of 

that tree with unknown data. The general approach to that problem is simply withholding some of 

the known instances and training the Decision Tree on the remaining ones. The excluded part of the 

known  instances  is  subsequently  used  for  testing  and  measuring  the  quality  of  the  resulting 

classifier. One problem with this approach is that the learning process will then be based on a lower 

number of instances and not on the entire knowledge available. In small datasets this can lead to too 

small training sets not representing the universe any more. A common method to address this issue 

is Cross Validation. This is based on repeating the above “holdout” method dividing the dataset into 

a number of equal groups.  Training and testing then takes place iteratively, complementing the 

knowledge from each training set by changing the test group with each iteration. So in the end, 

every instance is used for learning and also for testing.

To measure the quality of a single node, a confidence value is calculated using the numbers of 

correctly and incorrectly classified  training instances.  Table  2 shows  the  confusion  matrix,  the 

definition of True Positive (TP), False Positive (FP), False Negative (FN) and True Negative (TN) 
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Classified as true Classified as false
True True Positive False Negative

False False Positive True Negative

Table 2: Classification of correct and incorrect predictions
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classifications. A classification is True Positive if an instance was classified as true and also the real 

value of the examined attribute is true. The opposite applies to True Negatives. If an instance was 

classified as true but is really false, it is called False Positive and if the classification was false but 

the real value was true it is a False Negative. The aim of any machine classification algorithm is to 

achieve many true classifications while maintaining a low number of false classifications.

These  named  values  represent  the  classification  of  the  known  dataset.  What  really  interests, 

however,  is  how the  Decision  Tree  performs on  unknown data.  But  naturally it  is  not  known 

whether a classification of an unknown instance is correct or not. So the performance on new data is 

estimated,  based on the performance with the known test set.  The derivation of this confidence 

value is described in detail by Witten and Frank [24]. The confidence of a Decision Tree has to be 

based on the number of instances in the test set. The more instances that were tested on the tree, the 

greater is the probability that the observed performance also describes the performance on unknown 

data quite well. Formula (1) shows the calculation of the confidence value. It is derived from p, the 

precision of the node (Formula (2)),  n is the number of instances at the current node classified as 

positive  (3),  and a constant  z.  Note that  negative classifications  were ignored here because the 

primary aim is to predict, not to contradict, GO terms even if false negative classifications represent 

missed true positives.

confidence=
pz 2−z∗ p

n
−

p2

n


z2

4n2

1 z2

n

(1)

precision= p= TP
FPTP (2)

n=TPFP (3)

The constant z is dependent on a threshold which expresses the percentage of cases where the real 

performance is correctly represented in the training environment. So the confidence value using z 

for 95% stands for the relation of TP to FP on a node which will be observed in 95% of all cases 

where the tree is applied in the real world. A confidence value of 1 therefore means that in 95% of 

all  cases only True Positive classifications are assumed to result  from the current tree with real 

(unknown) objects. A value of 0 is the worst case, in which in the real world only False Positive 

classifications will be expected in 95% of all cases. By having this confidence value for each node, 
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it is possible to introduce quality controls. So the existing algorithm (implemented in the Kraken 

framework which was used for this work) excludes all nodes with a confidence less than a specified 

threshold.

Even  with  all  those  extensions,  Decision  Trees  are  computationally  relatively  inexpensive, 

considering the training phase as well as in terms of application. They are capable of dealing with 

large datasets, which is one reason why they are suitable for high-throughput Keyword prediction on 

Swiss-Prot. Rules extracted by the algorithm are easy to understand and human readable, which 

makes  them easy to  revise  and  evaluate  for  curators.  But  there  are  some  drawbacks  as  well. 

Decision Trees are not able to handle non-categorical target attributes and too many, especially 

numerical, attributes can lead to very complicated trees. Another disadvantage of Decision Trees is 

that they can only separate linearly, which leads to a lot of incorrect classifications on non-linearly 

separable datasets. They also work best with datasets where negative and positive examples are 

roughly equally distributed.

Spearmint Pipeline
Spearmint for Keyword prediction uses the described Decision Tree, working with several protein 

attributes found in TrEMBL. Since the rules generated shall be applied to TrEMBL, only attributes 

also  found  there  can  be  used.  General  information  found  in  every  TrEMBL  entry  includes 

taxonomic classification, InterPro group and InterPro matches. InterPro is a resource for protein 

families, domains and sites and currently combines 10 protein signature databases including Pfam, 

ProDom, PROSITE and TIGRFAMs. Signatures describing the same protein family or domain are 

grouped into unique InterPro entries with an accession, description and some cross-references as 

well as annotations  [9, 25]. An InterPro group therefore refers to one of those protein families or 

domains whereas the InterPro match means a single match of a signature. Those attributes are used 

as attributes for the Decision Tree targeting Keywords.

This  machine learning algorithm is  embedded in a pipeline of processes in  the form of a state 

machine. Several states, each processing a product in a specific way, can be put together in varying 

order. This way, loading protein data, preprocessing them, splitting, learning and testing can all be 

done in a separate state, each delivering its result to the product and forwarding it to the next state. 

This results in a very flexible approach to the data mining process. If for example the dataset has to 

be changed, only the loading state has to be replaced. Or for using a different splitting algorithm 

instead of Cross Validation, only the splitting state is affected. A typical Keyword prediction state 

machine is schematically shown in  Figure 3.2. A loader state is in charge of loading the known 

dataset into a product, which will be processed by the following states. To achieve a high quality 
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learning base, a filter state filters all fragmented or hypothetical  proteins. Then the splitter state 

divides  the dataset  into  a  training set  and a  test  set  of  protein  data.  The Attribute  finder  state 

assembles a list of available attributes out of the dataset. This process can be narrowed to some 

desired attribute types (for example TrEMBL attributes). Since a Decision Tree has to be generated 

for each target (i.e. for each single Keyword in our case), a target selector state extracts all existing 

target values and selects one per iteration. For this target, a learner state (the C4.5 algorithm in our 

case) builds a classifier which is supplied with a confidence value and then tested in the applier state 

with the hold back test set. During this process, predictions and contradictions are added and stored 

with the proteins where applicable. The next step is to go back to the target finder state and repeat 

the learning and application step for each remaining target. When all target values have been learned 

and the resulting trees have been tested, the evaluation state summarizes the performance of the 

algorithm over all classifiers with the help of the product. This is now holding all information about 

predictions and contradictions as well as the original information of each protein. Note that in this 

simple example no Cross Validation is included.
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Figure 3.2: A simple sequence of states for data mining. This work flow does not include Cross-
Validation.
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For simplifying the adaptation of Spearmint, every action on a ProteinData object is modelled as a 

Command. These Commands have an execute method which takes an Object of some type and 

performs specified actions on it. The Java 5 option of using generics1 is very helpful at this point. It 

enables  the  Commands  for  example  to  also  work  on  Collections  of  various  Java  types.  But 

additionally in Spearmint all those execute methods have a specified return type. Commands for 

testing, e.g. whether a protein has a specific GO term annotated, return booleans. The procedure of 

using Commands is similar to a known design pattern in programming, the “Visitor Pattern” [26].

GO Integration
In order to adapt the existing system, GO terms had to be integrated and retrieved from the database 

first. The existing Java class holding all information of one UniProtKB entry (ProteinData) only 

contained  part  of  the  GO  database  cross-references.  Hence  a  new  system  to  integrate  GO 

annotations with all their information was implemented. EBI internally maintains a database table of 

protein to GO relations, which is updated regularly from the Gene Ontology database. Amongst 

other  columns,  this  table  also  contains  one  column  for  UniProt  accession  numbers,  one  for 

corresponding GO ids and one for the evidence code of each GO association. This table is read in 

automatically and each line is transformed into an instance of the Java class GoAnnotation. Those 

GoAnnotations are grouped into lists per UniProt accession number and stored in a Java HashMap 

having the accession number as key and the list of GoAnnotations as value. This HashMap is then 

stored as a serialised GO annotation cache for easy access through the ProteinData. The whole 

procedure is depicted schematically in Figure 3.3. With the help of the resulting cache it is very easy 

to retrieve GO annotation information for each protein (by loading the cache into memory and 

querying  it  with  the  UniProt  accession)  and  to  store  those  GoAnnotations  in  the  existing 

ProteinData object when needed.

Once the GO annotations were included in the ProteinData object,  it  was possible  to adapt the 

Spearmint algorithm for GO prediction. An additional filter Command was implemented to filter 

out all proteins not containing any GO annotations. For the remaining proteins it was assumed that a 

GO term not annotated is a negative statement about the function of a protein. So the mentioned 

problem  of  missing  negative  associations  was  ignored  in  this  first  approach.  Also  the 

TargetSelectorState (remember Figure 3.2) was adapted to find all distinct GO terms in the dataset. 

The modular construction using states and commands made this simple. With the aim of comparing 

Keyword and GO term prediction with Spearmint, a fairly small training set of proteins was chosen. 

1 Generics allow a type or method to operate on objects of various types while providing compile-time type safety. 
It adds compile-time type safety to the Collections Framework and eliminates the drudgery of casting. See 
http://java.sun.com/j2se/1.5.0/docs/guide/language/generics.html for more information.
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Two large InterPro groups, Kringle proteins (IPR000001) and Connexins (IPR000500) containing 

78 and 85 Swiss-Prot proteins were used. After the filtering step (filtering proteins without GO 

terms, hypothetical proteins and fragments) 63 proteins remained. With those, a standard Spearmint 

run was started for Keywords as well as for GO terms.

3.2 Simple Mapping
The Spearmint Decision Tree algorithm could, in comparison with the Keyword run, not predict GO 

terms on the selected training set of proteins with a sufficient quality (detailed results described in 

Section  4.2).  Therefore an alternative approach had to be found. Swiss-Prot  Keywords and GO 

terms are very similar even if the Gene Ontology has a far wider variety of terms. On some Swiss-

Prot entries, the annotated Keywords are identical to the GO terms. Proteins for example can have 

the Keyword 'Gap junction' and also the GO term 'gap junction' (GO:0005921) attached. Hence a 

first idea was to use the obvious relationship between them and to investigate how a statistical 

approach performs in comparison with the GOA Keyword2GO mapping.
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Figure 3.3: The simplified build procedure for the GO annotation cache.
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The aim was to find out which manually annotated GO terms in Swiss-Prot appeared repeatedly in 

conjunction  with  a  specific  Keyword  on  a  protein.  To  detect  the  direct  relationships  between 

Keywords and GO terms and to convert them into reliable rules, Bayesian statistics were applied. 

The Bayesian rule for conditional probabilities, shown in formula (4) allows the calculation of the 

probability of  a GO term conditioned on the existence of  a Keyword annotation.  This  formula 

represents  the  probability  that  a  specific  GO  term,  let's  say  'gap  junction',  will  be  annotated 

whenever a specific Keyword, say 'Gap junction', is already annotated. The pipe '|' in the formula 

denotes 'on condition that' and the notation P(X) is read as the probability P of an event X.

PGO∣keyword =P keyword∣GO ∗PGO
Pkeyword 

(4)

As seen in (4), the Bayesian conditional probability can be computed with the help of three different 

probabilities.  These  are  the  probability  of  a  Keyword  being  present  if  a  GO  term  is  already 

annotated, P(Keyword|GO), the probability of the specific GO term annotation being present in all 

proteins,  P(GO),  and the probability of the specific  Keyword in all  proteins,  P(Keyword).  This 

formula can be rearranged to one which only needs two of those probabilities, using the fact that the 

probability of having a GO term and the probability of NOT having the GO term annotated sum to 

1. Formulas (5), (6) and (7) show the conversion of this fact into a form, which is then used to 

divide formula (4). Negation of a variable is shown through a horizontal line above the variable 

name.

PGO∣keyword PGO∣keyword =1 (5)

P keyword∣GO ∗PGO
Pkeyword 


P keyword∣GO∗P GO 

P keyword 
=1 (6)

P keyword∣GO ∗PGOPkeyword∣GO∗P GO 
P keyword 

=1 (7)

Since division by 1 does not change the original value, the result of that division still represents the 

conditional  probability  of  a  GO  term.  This  is  shown  in  formula  (8).  Now  it  is  obvious  that 

P(Keyword) can be cancelled from that fraction. What remains is the calculation of the conditional 

probability without the need to calculate P(Keyword) and only using P(Keyword|GO) and P(GO), 
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whilst taking the corresponding negative probabilities into account (9). The probability of a specific 

Keyword, which is not easy to calculate, is no longer necessary and all other probabilities can be 

estimated by counting directly from the dataset.

PGO∣keyword =

Pkeyword∣GO∗PGO 
P keyword 

P keyword∣GO∗P GO Pkeyword∣GO ∗PGO
P keyword 

(8)

PGO∣keyword = P keyword∣GO ∗P GO
Pkeyword∣GO ∗PGOP keyword∣GO∗P GO 

(9)

The  same result  may also  be  achieved  by simply counting  all  proteins  where  the  Keyword  is 

annotated, and then out of these counting the proteins where the GO term is also available and 

divide the latter by the former.  Table 3 shows this for a very simple example. For each (mock) 

protein the existence of a GO term X and/or Keyword Y is marked by a tick. Proteins one to five 

have the GO term annotated, and proteins two to five also have a Keyword association. Only a 

Keyword annotation is found for proteins nine and ten. By counting the co-occurrence of GO term 

and Keyword and dividing this by the number of Keyword occurrences, we get a result of rounded 

0.667 for the probability of having the GO term X annotated, if Keyword Y is already present. 

Using the derived formula to calculate this probability yields the same result (10).

PGO X∣keyword Y =

4
6
∗

5
10

4
6
∗ 5

10
2

6
∗ 5

10

=
4
6
≈0.667 (10)
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Table 3: An example distribution of GO term X 
and Keyword Y on ten proteins

Protein GO X Keyword Y
1  -
2  
3  
4  
5  
6 - -
7 - -
8 - -
9 - 
10 - 
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The advantage of  the derived formula is  that  it  is  extendible  to  more than one condition.  It is 

possible  to  calculate  the  conditional  probability  of  a  GO  term  depending  on  more  than  one 

annotation  in  the  future.  Therefore  a  conditional  probability  for  each  additional  attribute,  like 

P(comment|GO) or P(comment| GO ) respectively for comments, for example, had to be inserted 

into the formula (9) at each product. This would then look like formula (11). One has to keep in 

mind, however, that this calculation assumes independence between all used attributes, which does 

not represent the true state of the data. But such assumptions perform, in general, reasonably well on 

real data. The formula however now contains three more calculation steps and three more counting 

steps for just  one additional  attribute.  It is  easy to see that this leads to a time consuming and 

computationally expensive calculation, if a greater number of attributes is to be taken into account.

PGO∣AB= P A∣GO∗P B∣GO∗P GO 
P A∣GO ∗PB∣GO∗PGOP A∣GO ∗PB∣GO ∗PGO

(11)

The calculation (adapted from Witten and Frank, 2000  [24]) also shows,  that not only positive 

examples but also negative examples (where no GO term is annotated) are taken into account. What 

also emerges from the small example is that cases where the GO term is annotated but the Keyword 

is not, do not influence the result. Keeping the much greater variance of GO in mind, however, one 

can assume that a single Keyword is often expressed through more than one GO terms. Hence, the 

examples where a Keyword is not associated with the current GO term are not as important as the 

converse, because it may possibly be covered by another GO term. Thereby the disadvantage of this 

method is that lots of information contained in the database is likely to be discarded. Simplistic 

approaches like this one are, however, still often quite successful.

Using this calculation for each possible combination of a Swiss-Prot Keyword and a GO term leads 

to  rules  of  the  form:  IF Keyword  Y THEN GO term X,  and provides  a  measurement  for  the 

reliability of each possible rule. A set of Keywords, leading to a minimum probability of 80% is 

then selected for each GO term, and a protein associated with one or more of those Keywords gets 

the GO term predicted. Contradictions of GO terms are made for every protein which have none of 

the Keywords attached. In comparison to the GOA Keyword to GO mapping, this approach is not 

static. This means that information found in “false positive” examples, where a GO term is not 

annotated  but  the  Keyword  is,  are  taken  into  account  during  the  calculation  and  decrease  the 

confidence value of a rule.
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The naïve Bayesian principle works for different kinds of annotations. Since Keywords in TrEMBL 

are mostly derived by automatic annotation, and are therefore not manually curated, their usage 

could easily lead to a proliferation of erroneous annotations. InterPro groups were therefore also 

tested to predict GO terms in the same manner. An advantage of the described principle is that each 

rule is provided with a confidence value which makes it easy to pick only reliable rules.

3.3 A Complementary Approach
Since the Decision Tree approach left  room for improvement and Simple Mapping tends to be 

rather complex for more than a few attributes, a complementary method was considered. Machine 

learning algorithms rely on the quality of the dataset on which they are based. Chapter One of this 

thesis already describes the drawbacks of the current state of the database, namely that GO terms are 

inconsistently  annotated  in  UniProtKB  and  still  have  poor  coverage.  The  hypothesis  of  the 

following approach was that a more consistent training set can enhance GO term predictions.

Positive Enrichment
The level of detail of GO terms assigned to similar proteins tends to vary. However, they often 

originate in the same lineage or are related to each other by only a few steps in the GO graph. Only 

the most detailed adequate GO term per protein is annotated in UniProtKB, so the relationships 

between the entries are not immediately obvious. Consider for example a set of proteins that have 

GO annotations  of  one  and  the  same lineage.  Any machine  learning algorithm using  only the 

existing annotation  will  have difficulties  to  find the information  hidden in  there.  The group of 

proteins will not be detected as having comparable function and no rule will be built for it. But it is 

desirable to at  least find a rule  grouping those proteins under the most  specific common term. 

Therefore a complete annotation, in terms of annotating the whole path from the detailed terms to 

the more general ones is needed. This raises an additional problem: considering the two different 

relationships in GO, paths from a specific term to a more general one do not necessarily mean that 

the specific term is an instance of the more general term. It is also possible that a path is interrupted 

by a “part-of” connection which results in a term not being an instance of the higher level term any 

more. For example, taking a look back at Figure 2.4 it is not correct to assume that “membrane” is a 

“cell” but “membrane” is part of a “cell”. Considering all (consecutive) child terms (A) as instances 

of the most general term (B) in a path of only “is-a” connections, and also imagining this parent 

term (B) to be a “part-of” child of some other term (C), it is always true that all children (A) of the 

term (B) are “part-of” term (C). 
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In terms of protein annotation however, the situation becomes more difficult. Imagine for example 

that the term “plasma membrane” is annotated to protein X. Using the rule above would allow you 

to annotate “part-of” “cell” to that protein as well. But since the GO annotation in UniProtKB does 

not  include  these  qualifiers,  the  information  about  the  connection  between  GO  terms  will  be 

dropped. On the other hand, annotating the GO term “cell” without the qualifier to a protein which 

is  originally only found  in  the  plasma membrane  of  a  cell  is  wrong.  Taking  a  look  at  “is-a” 

relationships in comparison shows that it is possible to additionally annotate a parent term without 

changing the original meaning of the annotation. The protein above for example is found in the 

“plasma membrane”, which is-a “membrane”. So it is also true to say, that the protein localises to a 

membrane. Adding terms of higher levels is therefore allowed for “is-a” parents but not for “part-

of” parents if the meaning of an annotation is to remain unchanged. Is has to be mentioned that 

since January 2007, Gene Ontology is “is-a complete”. That means that every GO term has now at 

least one “is-a” parent and therefore a complete “is-a” path to the root.
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Figure  3.4:  Four  simple  examples  for  proteins  functioning  similarly.  Each  tree  simplifies  the  GO 
hierarchy. The originally annotated term is marked by a red circle. Black circles denote parental terms  
which can be additionally annotated without changing the original meaning of the annotation. Note that  
only  “IS-A” relationships  between GO terms are considered at  the moment and the multiple  parent  
characteristic of GO is not represented here.
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Hence the positive enrichment approach aimed to complement the existing annotation using the GO 

hierarchy. Figure 3.4 shows what this means (note that only “is-a” connections are considered here). 

Four similar proteins have different GO annotations (denoted by a red circle) but those annotations 

are not far apart from each other concerning the hierarchy of the GO DAG. Proteins a) and b) are 

annotated at the same level of detail with sibling terms, but parental terms of their original GO 

annotations (black circles in the graph) are the same. For protein c), a more general annotation was 

made, since knowledge about that protein is not as detailed as for a) and b). However considering 

the parental terms in cases a), b), and c) shows that all three play a role in a process B (when 

considering only biological process, the same is true for cellular component or molecular function), 

and also an even more general process A. Protein d) has a GO term in a different branch annotated, 

but it still has process A in common with all other proteins when parent terms are considered. A 

machine learning algorithm should be capable of extracting the information that proteins a), b), and 

c) play a role in process B. Even though the rule is not as detailed as if it predicted more specific 

processes D or E, but the more general rule is still better than exporting no rule at all about these 

proteins, which is the result if the GO hierarchy is not taken into account. 

The approach should enrich the annotation of a protein by adding all “is-a” parents of original GO 

annotations to the protein. For this purpose, the Gene Ontology graph containing the hierarchy and 

the different relationships between terms had to be imported into the data mining system (named 

Kraken). The Gene Ontology provides its users with a database containing not only the terms itself 

but also the relations between them. It is only one single table describing those relationships named 

GoRelations. It maps child GO ids to parent GO ids and also defines the relation type between them. 

Figure 3.5 shows a simplified example where all relationships between four terms are contained in 

three lines of the table described . Both multiple children relations and multiple parent connections 

are  included  in  a  very  simple  way.  This  database  table  has  to  be  converted  into  a  DAG 

representation in Java. The GO database provides another table, containing all distinct GO terms 

with their ID, the term itself and its category (molecular function, biological process or cellular 

component).  Similar  to  the  process  of  making  GO  annotation  accessible  for  Java  classes  the 

database tables are read out and converted into Java objects.  GoGraphLoader first  retrieves the 

different terms, creates a GoTermNode for each and stores it in a HashMap using the GO ID as a 

key. A GoTermNode contains the term itself and a List of parental GO IDs as well as a List of child 

IDs for each type of relation. These lists are then filled by traversing the GO relations table. For 

each line a relation is added to the GoTermNode of both GO IDs involved. In the example given, 

the first line of the table creates a parent for GO:1 and a child for GO:3 by adding the corresponding 
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GO IDs to their list of “is-a”-children or “is-a”-parents, respectively. Once this is done, the DAG in 

form of the generated HashMap containing GoTermNodes by their IDs can be serialized and stored 

for further use.

After  that,  an  extended  ProteinData  object  was  implemented  which  is  filled  with  all  existing 

information per protein.  Then a simple loop iterates through the GO DAG retrieving all  “is-a” 

parents of the existing GO annotations and adds them to the ExtendedProteinData. This enriched 

protein can now be used for machine learning. Having “annotated” additional positive GO terms on 

the proteins provides a more complete GO annotation in terms of combining general and detailed 

GO terms similar to the taxonomy classification in UniProtKB. Machine learning tools can now 

find rules about more general GO terms that proteins may have in common.

Negative Enrichment
The other big previously mentioned problem with UniProtKB GO annotation, the missing negative 

examples,  is  not  yet addressed,  and a  way to  detect  such negative  examples  had to  be found. 

Following the Xanthippe rule exclusion approach (see  [6]), a statistical analysis of the data was 

carried out. To extract as many reliable true negatives as possible from UniProtKB/Swiss-Prot, the 

rules  had  to  be  based  on  observed  rather  than  predicted  data.  For  this  reason,  taxonomy 

classification in proteins was chosen to build exclusion rules  for  GO terms.  An exclusion rule 

excludes, for example, the GO term “nucleus” for all proteins classified as bacterial proteins. In 

addition, exclusion rules should be as general as possible. For example, if no bacteria have the GO 

term “nucleus” then only one rule excluding the term for bacteria should be generated and not a rule 

for every group of bacteria, for example proteobacteria.
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Figure  3.5:  Representation  of  the  GO  relations  in  the  
database. The shown graph is entirely mirrored in the table.

Child ID Parent ID Rel Type
GO:1 GO:3 is-a
GO:1 GO:4 part-of
GO:2 GO:4 is-a

GO:3 GO:4

GO:1 GO:2

part-of

is-a
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To extract rules like this from UniProtKB/Swiss-Prot, a statistical approach based on the proteins 

having at least one GO term annotated was chosen. GO terms inferred from electronic annotation 

are again discarded, i.e. only manually curated GO terms are taken into account. If a GO term is not 

found in combination with a specific taxonomy classification and the probability for this case is 

lower than an empirically determined threshold, a rule is exported. The probability of not observing 

a  single  GO term  X in  all  proteins  belonging to  a  taxonomy  Y is  simply calculated  assuming 

binomial distribution of the number of GO terms observed in all trials (i.e. a uniform probability p 

over all trials). Formula (12) shows the general formula for calculating the probability of achieving 

exactly  k successes  in  a  sequence of  n independent  experiments,  each of  which succeeds with 

probability p [27]. In terms of an urn experiment, a taxonomy to GO exclusion might be phrased: 

“When drawing all proteins belonging to a specific taxonomy out of the complete protein set, we do 

not observe a specific GO term. Is the probability for this case low enough to export an exclusion 

rule?”. Exclusion rules should be extracted if a GO term does not exist within a specific taxonomy, 

hence in  formula  (12)  k is  set  to  zero.  n  is  the  number  of  proteins  belonging to  a  taxonomy 

classification, p is the probability of observing a GO term, and X is the 'success' of having a specific 

GO term annotated. The probability of that GO term is estimated by its relative frequency in the 

complete set of proteins. If k equals zero, formula (12) can be converted into formula (13) which is 

much easier to calculate.

P X =k =n
k pk 1−p n−k (12)

P X =0=1− pn (13)

One drawback of this calculation is the assumption of a binomial distribution, which presumes that 

the probability p does not change during the sequence of n experiments. Again in terms of an urn 

experiment this would mean sampling with replacement. As each protein should only be considered 

once this is not true in our setting. The hypergeometric distribution describes sampling without 

replacement and is  therefore more suitable  in  this  case.  Formula (14) shows the probability of 

observing k times the GO term X in a specific taxonomy using the hypergeometric distribution. M 

denotes the frequency of a specific attribute (GO term annotated) in the whole set, N is the number 

of elements in the urn (all proteins having at least one GO term) and n is the sample size, which is 

the frequency of the current taxonomy classification in our setting. Again, k is set to zero making 
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the  calculation  a  bit  easier,  which  is  shown  in  formula  (15).  Note  that  M  in  this  calculation 

represents the number of successes in the whole set of elements, which is directly proportional to 

the probability of success used in the binomial calculation.

P X =k =
M

k N−M
n−k 

N
n 

(14)

P X =0=
N−M

n 
N

n 
(15)

The main problem using the hypergeometric distribution is its mathematical complexity. Even for 

formula (15) there are still two binomial coefficients to be calculated which easily result in greater 

values than a Java “double” can hold (a solution with Java “BigDouble” was implemented for this 

reason  but  not  used  for  the  reasons  described  in  the  following paragraph)  or  a  normal  pocket 

calculator can calculate with. But if the sample size n is relatively small in comparison to the size of 

the complete set of proteins (n/N<0.05), the binomial distribution can be used as an approximation 

to the hypergeometric distribution. This is visualised in Figure 3.6. Lines represent the probability 

of observing exactly the same ratio of success to failure in the trial set, which is also found in the 

whole dataset, or in other words the accuracy of the testing method depending on relation of the 

number of elements n drawn from the dataset to its size N. The figure shows two lines for each case 

out of a set of selected probabilities of success. Dashed lines are calculated by assuming binomial 

distribution (with replacement). The solid lines result  from the same probability calculated with 

hypergeometric distribution (without replacement). The hypergeometric distribution is much more 

accurate for greater ratios n/N. The graph approaches a probability of 1 for cases where all elements 

of the urn were tested, and this is exactly what is expected. At the other end of the range, where n/N 

becomes very small, the two lines for each probability of success more and more approach each 

other.  The common rule of taking a ratio n/N < 0.05 or 0.1 as a limit  for the use of binomial 

distribution as approximation to the hypergeometric distribution can be confirmed here. Another 

graph however shows the distance between both calculations in the only case used in this work: 

where k is zero (see Figure 3.7). Depending on the frequency of “successes” in the whole dataset 

(the frequency of a specific GO term in our case), which directly influences the probability of a 
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Figure  3.6:  Comparison  of  binomial  (b,  dashed)  and  hypergeometric  (h,  solid)  distributions  for  different  
probabilities of success. The shown graphs represent the probabilities of observing exactly the same ratio of  
success to failure as the real ratio is in dependency to n/N. Note that the y-axis is scaled logarithmic which  
does not change the rough shape of the shown graphs but was done only due to better visualisation.
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Figure 3.7: Distance between hypergeometric distribution and binomial distribution for several probabilities of  
success for the case that no success was observed in the trial (k=0)
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success, the error rate of the binomial distribution has a peak at varying values of n/N. The smaller p 

the greater the value n/N of the error peak and the greater the error of the binomial distribution. But 

note that the maximum error in that graph is only 2.57*10-3 for p equals 0.1. The next figure (3.8) 

shows the two distributions and the error rate for a probability of success of only 0.001 where the 

maximum error  is  6.82*10-3.  Note  the  logarithmic  scale  of  the  y-axis.  This  graph is  based  on 

numbers similar to those found in Swiss-Prot,  N is 35,000 (approximately the number of proteins 

containing manual GO terms in Swiss-Prot) and  n is chosen to be 40 which is about the average 

number of GO term occurrences. Also shown is the threshold of maximum probability to export an 

exclusion rule at 1*10-10. This threshold cuts off the probability where the error rate is almost as 

small as the binomial probability. Even if this means that the error of the binomial calculation is as 

big as the result itself, the binomial calculation can be used for our purpose. As seen in Figure 3.8, 

the binomial calculated probability is always higher than the hypergeometric calculated one (for the 

case that k equals zero). In our application, the chance to export a rule about the current GO term 

and taxon is increasing with lower probabilities for the case where no GO term is found in the 
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Figure 3.8: Binomial distribution, hypergeometric distribution and the distance between both for  
zero successes in an example using N=35000 and M=40 (p=0.001) depending on the number of  
elements drawn from the urn.  The maximum error is 6.82*10-3 but  the threshold for maximum 
probability  (1*10-10)  cuts  that  off  at  an  error  rate  very  similar  to  the  threshold.  Note  the  
logarithmic scale on the y-axis
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taxons proteins. So the binomial calculation is the conservative approach and leads to fewer but 

more  reliable  exclusions  than the  hypergeometric  distribution.  This  means,  however,  that  rules 

which could have been excluded are not, in favour of generating a more reliable set of rules.

The  described  method  provides  exclusion  rules  for  different  taxonomic  classifications.  An 

additional  requirement  was  to  ensure  that  only  the  most  general  applicable  taxon  out  of  the 

taxonomic tree is associated with a GO exclusion. This is addressed by sorting all taxons by their 

frequency in Swiss-Prot under the assumption that the most general taxon is also the most frequent 

one. Then rules are built and stored in a HashMap containing a List of GO terms for each taxon (the 

taxon id was chosen to be the key). During the process of rule generation, each new excluding taxon 

and all its ancestors are looked up in this exclusion map and, only if none of them already excluded 

the current GO term, a new rule was exported (stored in the map).

The same process is also working for InterPro groups. So exclusion rules look like “InterPro group 

Y excludes GO term X”. Since InterPro groups do not have a hierarchy like taxons, the lookup 

during the rule generation step is not necessary.

The exclusion rules generated are then used to provide negative GO associations for the proteins, 

which are stored just like the additional positive GO terms in the ExtendedProteinData object. If for 

example a rule is “prokaryote excludes nucleus” and a protein has a taxonomic classification for 

prokaryotes, then nucleus is added as a negative GO annotation. A further enrichment procedure 

then takes the GO hierarchy into account and adds additional negatives. This works similarly as the 

positive enrichment process, only in the opposite direction. For each excluded GO term all more 

specific “is-a” child terms can also be excluded.

Extending Spearmint
Due to explicit negative GO term associations, the question as to whether a GO term is annotated to 

a  given protein  can now result  in  three different  answers.  “True” if  the GO term is  annotated 

(originally or due to the enrichment process), “False” if it is in the negative GO annotation list and 

“DontKnow” otherwise.

The Decision Tree algorithm employed by Spearmint can only handle binary results, so a filtering 

step was implemented to exclude all “DontKnows”. For each currently considered GO term (target), 

all proteins which returned a “DontKnow”-result for that GO term were filtered out. Thus a set of 

proteins having either the GO term attached or a negative GO term association was extracted. That 

set of proteins was then used to train the learning algorithm. Hence the filtering step had to be 

implemented between the TargetSelectorState and the LearnerState (as seen in  Figure 3.2).  The 
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HasGoTermCommand, now returning a Java Integer instead of a boolean, had to be converted back 

to  a  boolean  command  after  this  filtering  step  so  that  the  rest  of  the  pipeline  could  remain 

unchanged.
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4 Results

4.1 Used Measurements
To  evaluate  the  results  and  compare  them,  four  common  measurements  were  used:  accuracy, 

precision, sensitivity (also called recall) and specificity. These values are all calculated on the base 

of true positive (TP), false positive (FP), false negative (FN) and true negative (TN) predictions 

(also see Table 2 on page 23). A definition of them is shown in the following formulas.

accuracy= TPTN
TPTNFPFN (16)

precision= TP
TPFP (17)

sensitivity=recall= TP
TPFN (18)

specificity= TN
FPTN (19)

These measures represent the quality of a machine learning algorithm, where accuracy expresses the 

percentage of all correct predictions out of the sum of all predictions made. Precision means the 

fraction of all positive predictions that are correct, whereas sensitivity calculates the percentage of 

positive  instances that  were also predicted as  positive,  and specificity expresses the number of 

negative instances correctly classified as negatives.

4.2 Comparison of the Approaches
All approaches were tested on a small  dataset consisting of proteins from two InterPro groups, 

Kringle  proteins  (IPR000001)  and  Connexins  (IPR000500).  For  achieving  a  comparable  set  of 

proteins and high data quality, hypothetical proteins and fragmented proteins were filtered out using 

the corresponding Swiss-Prot Keywords. To achieve a better set concerning negative associations 

(for  those  approaches  not  based  on  enriched  proteins)  records  without  any manual  GO  term 

annotation were filtered out. Thus the size of the sample set of proteins was only 63 and ideal for 

quick testing and proof of concept. For each run using the described methods, correct and false 

predictions were counted. 

42



Automatic GO Term Prediction on UniProtKB Comparison of the Approaches 4.2

Raw Spearmint and Simple Mapping
In order to show that the existing Spearmint algorithm is not applicable to GO term prediction, first 

a comparative run of Spearmint on Keywords and then on GO terms was conducted. The result is 

shown in Table 4. Also included are the results for the Simple Mapping of Keywords to GO terms 

and of InterPro groups to GO terms. The figures for Spearmint originate from a five-fold Cross 

Validation on raw protein data out of UniProtKB before any positive or negative enrichment took 

place. It is easy to recognize the high numbers of true classifications in the Keyword run (417 true 

positives and 1920 true negatives). 69 false positive predictions of Keywords influence the quality 

of the classifier more than the 55 false negatives, since negative predictions, i.e. contradictions, will 

not  be transferred to  the  database  in  the  end.  The GO term classifier  resulting from the  same 

unchanged algorithm behaves much worse in comparison. Striking is the low number of (true and 

false) positive predictions  and the ratio of more false positives (85) to less true positives  (61). 

Unfortunately  the  simple  mapping  approach  didn't  improve  the  over  all  number  of  positive 

predictions. But the ratio of true positives (20 Keyword based, 21 InterPro based) to false positives 

(6 Keyword based,  9 InterPro based) increased distinctly. The simple mapping also provided a 

smaller number of negative associations (494 Keyword based and 594 InterPro based) but the false 

negative numbers (34 and 64) stayed comparably low.  Table 5 collects the values for accuracy, 
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Table 5: Comparison of accuracy, precision, sensitivity and specificity  
resulting out of he Spearmint run on Keywords and GO terms as well as for the  
Simple Mapping based on Keywords and InterPro groups on the small test set  
before enrichment

Table 4: True Positive, False Positive, False Negative and True Negative 
counts for the Spearmint run on Keywords and GO terms as well as for the 
Simple Mapping based on Keywords and InterPro groups. Training set was the 
63 protein sample set before enrichment.

Spearmint Simple Mapping 

Keywords GO terms IPR based

TP 417 61 20 21
FP 69 85 6 9
FN 55 73 34 64
TN 1920 1069 460 530

keyword 
based

Spearmint Simple Mapping 

Keywords GO terms IPR based

accuracy 0.95 0.88 0.92 0.88
precision 0.86 0.42 0.77 0.70
sensitivity 0.88 0.46 0.37 0.25
specificity 0.97 0.93 0.99 0.98

keyword 
based
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precision, sensitivity and specificity resulting from those absolute counts. Using the rather small set 

of proteins contained in the two filtered InterPro groups, the prediction result was, as expected, not 

as significant as if the set had been larger. Nevertheless, the values achieved by pure Spearmint 

were very good for Keywords (95% accuracy, 86% precision, 88% sensitivity and 97% specificity) 

whereas  the  GO  term  prediction  had  much  worse  values,  especially  for  precision  (42%)  and 

sensitivity (46%). The simple mapping of Keywords to GO terms lead to a slight improvement over 

the C4.5 Decision Tree approach on GO terms. The values of accuracy and specificity still lie above 

90% but  the  values  for  precision  and sensitivity differ  widely. Whereas  the  Decision  Tree  for 

Keywords showed 86% precision and 88% sensitivity but only 42% precision and 46% sensitivity 

for  GO  terms,  the  simple  mapping  already  shows  an  almost  doubled  precision  of  77%  in 

comparison with the C4.5 approach, but a slightly lower sensitivity of 37%. That is what follows 

from a better ratio of true positive classifications to false positive classifications and the resulting 

decreased number of positive predictions in comparison to negative predictions. The mapping of 

InterPro groups to  GO terms shows a  very similar  result  to  the  Keyword to  GO mapping.  An 

accuracy of 88%, a precision of 70%, a sensitivity of 25% and a specificity of 98% are in general 

slightly  worse  than  those  values  for  Keyword  mapping.  Note  that  for  the  Simple  Mapping 

algorithm, no Cross Validation was used since the algorithm itself is based on the assumption that 

ALL proteins are included in the learning step. Hence a run with complete Swiss-Prot would be 

necessary but could not yet be conducted due to lack of time.

Spearmint on Positive Enriched Proteins
One side product of the enrichment idea was to only positively enrich proteins with parental GO 

terms.  A  Spearmint  run  with  those  however  did  not  yield  convincing  results.  Accuracy  and 

specificity stayed about the same as with the original proteins (87% and 93%), sensitivity increased 

slightly  to  45%  and  the  precision  decreased  by  1%  to  45%.  The  number  of  predictions  and 

contradictions  was,  as  expected,  much higher  than before  (7876 in  total)  but  unfortunately the 

number of positive classifications increased similarly in  false positives  (508) and true positives 

(421).

Negative Enrichment of Proteins
The probabilistic approach using the binomial distribution for the negative search resulted in the 

original unchanged protein data of whole Swiss-Prot in 719 exclusion rules, which could be pruned 

to 122 rules due to taxonomy hierarchy. These rules covered 22 different taxonomic classifications 

and 104 different GO terms. For comparison: The same calculation based on Keywords instead of 
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GO terms produced an overall  amount of 8726 or a pruned set  of 1613 rules for 340 different 

taxonomy classifications which highlights the relatively small number of GO exclusion rules. This 

again can be explained by lack of GO annotations in UniProt.

Resulting  exclusions  for  GO terms  are  for  example:  “Bacteria  exclude  GO:0005829  (cytosol), 

GO:0005783 (endoplasmic reticulum), GO:0005739 (mitochondrion), GO:0005634 (nucleus) and 

GO:0005886 (plasma membrane)”. Eukaryotes exclude some GO terms which have the connotation 

of bacteria. Those GO terms are marked “sensu Bacteria” for example GO:0030436 (sporulation 

(sensu  Bacteria)).  But  on  the  other  hand,  eukaryotes  are  also  said  to  exclude  “photosynthetic 

electron transport” or “phycobilisome” which are both involved in photosynthesis and therefore 

found especially in plants, although there are of course bacteria doing photosynthesis as well. Hence 

although these rules are not verified by an biologist, some of them look not as reasonable as others. 

To see whether the principle of negative search could be successful, those rules were nevertheless 

used for testing purposes. Applied to all manually GO annotated Swiss-Prot entries, approximately 

1.4 million negative GO associations were added using these plain exclusion rules. Taking the GO 

hierarchy into account and enriching all proteins before the negative finder was applied, the new set 

of rules contained four times more rules. 425 exclusion rules covering 328 different GO terms in 38 

taxons could be extracted. Those enriched exclusion rules produced over 3.1 million negative GO 

terms on Swiss-Prot. But nevertheless in both cases, filtering “DontKnows” out of the learning set 

for each target lead to a very small group of remaining proteins. To avoid overprediction, only GO 

terms occurring at a sufficient frequency (3 in the small test set of 63 proteins) were considered as 

targets. But for all the remaining GO terms no protein having a negative association with that GO 

term could be found. In this way training sets consisted only of proteins having the target GO term 

annotated and contained no data to learn negative associations. A test with a greater training set of 

proteins showed only slightly better results. Almost 90% of all proteins had to be filtered out for 

each target. The resulting training sets for each target were still too small and therefore excluded 

from the training. Thus the exclusion rules produced not a single GO term contradiction in the 

Decision Tree algorithm.
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5 Discussion
The results  of this work demonstrate that it  is challenging to predict GO terms for UniProtKB. 

Spearmint had difficulties in predicting GO terms, both in the original version and with enriched 

proteins.  Simple  Mapping  also  didn't  show  convincing  improvements  and  the  complementary 

approach for negative search didn't produce true negative associations. Even though, as seen before, 

there are some exclusion rules, which are perfectly reasonable. However the investigation of GO 

annotations in UniProtKB provides valuable insights into the current state of the database.

The biggest problem with GO terms is the lack of annotation. There are only 33,624 entries (13% of 

UniProtKB/Swiss-Prot) which have at least one GO term (excluding those inferred from electronic 

annotation). Whereas entries which have at least one Keyword annotated sum up to 246,405 (98% 

of UniProtKB/Swiss-Prot). Also the distribution of taxonomic classifications among the GO term 

associated  proteins  does  not  reflect  the  distribution  of  Organism  classifications  in 

UniProtKB/Swiss-Prot.  For  example,  34,768  (96.7%)  of  the  GO  term  associated  proteins  are 

eukaryotic proteins, whereas in UniProtKB/Swiss-Prot eukaryotes cover only approximately 43% of 

all  proteins.  The  Gene  Ontology consortium  was  originally  founded  by  research  groups  only 

covering eukaryotic organisms, which is the reason that prokaryotic GO annotation started later and 

is not yet as far on as annotation on eukaryotes. Bacteria are strongly underrepresented among GO 

term associated proteins with only 1,086 (3%), whereas about 50% of UniProtKB/Swiss-Prot entries 

are  bacterial  proteins.  Hence since manual GO annotation in Swiss-Prot  concentrates on a  few 

model organisms, a future approach will be to also restrict GO term prediction to those organisms. 

The training set would then only consist of proteins of one specific organism at a time and would 

hopefully be a better learning base for machine learning algorithms.

One problem in UniProtKB is the true negative association of GO terms. Take a look again at the 

rules and their coverage of distinct GO terms (104 for the plain exclusion and 328 for the enriched 

exclusion). In Swiss-Prot, approximately 8,700 distinct GO terms are currently used. This means 

that  for 99% of all  GO terms no exclusion rule was found. Considering the exclusion rule set 

extracted from enriched proteins, still only 4% of all used GO terms were covered. So even if in the 

example  set  of  proteins  each  entry  was  provided  with  negative  associations,  these  negative 

associations did not lead to a usable data set for machine learning. The idea of excluding certain GO 

terms for taxonomic  classifications though can be really helpful  for future GO annotation.  The 
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existing annotations by GOA could eventually be tested on these exclusion rules and be improved 

that way. For the manual GO annotation process, the rules can also be useful to make the work 

easier for curators.

The relatively poor result of Spearmint on enriched proteins is presumably mostly resulting from 

those still missing real negative examples. The high number of the false positive predictions from 

Spearmint  don't  have  to  be  all  incorrect.  But  since  Spearmint  (without  the  explicit  negative 

associations) judges non-annotated GO terms as negative examples, even though this is probably in 

many cases false, such a high number of false positives can be explained. A major part of those 

false positives could possibly be shifted to true positives or at least to predictions, where it is not 

possible to say if they are correct or incorrect, if the dataset was more complete.

Other ideas for approaching the problem of automatic  GO annotation are to use a probabilistic 

approach (as Bayesian Nets)  instead of a classifier.  This  approach would for example  combine 

different attributes of a protein and calculate the probability of having a GO term annotated if all 

those  attributes  are  annotated.  That  would  have  the  advantage  of  not  needing  true  negative 

associations but the disadvantage of not being able to cross validate. This technique together with 

the exclusions  could also be useful  for supporting future manual GO curation.  Suggestions for 

specific terms would make it easier for curators to chose correct terms for a protein. This approach 

applied on existing GO terms only could also help to combine terms from all three domains. The 

biological  process  and molecular  function  of  a  protein,  especially, are  often  directly connected 

(e.g.  ),  but  GO  does  not  support  these  relationships  between  the  domains.  So  a  probabilistic 

approach could extract those connections out of manual GO annotations in UniProtKB and again 

propose them to curators annotating one of the GO terms involved in such a connection.

A previously mentioned drawback of Decision Trees is that they work best on a balanced training 

set,  where positive and negative examples have similar frequencies. In contrast,  Support  Vector 

Machines (SVM), another machine learning algorithm, could handle the great number of outliers 

and would not need as many true negatives. SVMs are also capable of separating data in more than 

one dimension so not only linear separation is possible.

A  potential  problem  of  the  applied  approaches  is  that  during  the  whole  work,  TrEMBL was 

assumed to hold negligible information about manual GO annotation. But in fact there are about 

37,000  manually  GO curated  proteins,  a  comparable  absolute  number  to  those  in  Swiss-Prot. 

Therefore,  it  would  double  the  training  set  and  the  included  knowledge  base  to  include  those 

proteins as well in the training set of all machine learning tools.
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What transpires from the conducted database analysis,  is that GO annotation in UniProtKB still 

leaves a lot of room for improvement. Curators could make automatic annotation much easier, if the 

GO qualifier 'NOT' would be used in a broader way for example1. Therefore this qualifier had to be 

included  in  the  UniProtKB database  schema first.  In  this  way, negative  associations  could  be 

manually curated even if this is not a trivial task of course, keeping the huge number of GO terms in 

mind. The work of GOA and other curating teams turned out to be very valuable and there is still 

plenty to do. Maybe the investigated approaches and other ideas could be much more successfully 

applied to UniProtKB in a few years. But for now, GO data in Swiss-Prot has turned out to be more 

difficult to use in automatic annotation than expected. To reach reliable predictions on GO terms 

out of the existing state of the database, a closer examination of the data will be necessary.

1 NOT is actually used by curators in a very small amount of proteins. This is not transferred to UniProtKB though 
and the usage takes place in a way that is not usable for machine learning. Curators use the qualifier mainly to 
correct existing annotations which turned out to be false. About 200 proteins have such associations.
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6 Appendix
A Example Swiss-Prot Entry
An abridged Swiss-Prot entry in flat file format as an example of a well annotated protein data 

record. For a better overview headlines were added to the main paragraphs.
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General Information about the entry
ID   128UP_DROME             Reviewed;         368 AA.
AC   P32234; Q9V648;
DT   01-OCT-1993, integrated into UniProtKB/Swiss-Prot.
DT   29-MAR-2005, sequence version 2.
DT   23-JAN-2007, entry version 47.
DE   GTP-binding protein 128up.

Origin of the protein
GN   Name=128up; Synonyms=GTP-bp; ORFNames=CG8340;
OS   Drosophila melanogaster (Fruit fly).
OC   Eukaryota; Metazoa; Arthropoda; Hexapoda; Insecta; Pterygota;
OC   Neoptera; Endopterygota; Diptera; Brachycera; Muscomorpha;
OC   Ephydroidea; Drosophilidae; Drosophila.
OX   NCBI_TaxID=7227;

Literature References
RN   [1]
RP   NUCLEOTIDE SEQUENCE [GENOMIC DNA].
RC   STRAIN=Oregon-R;
RX   MEDLINE=94166747; PubMed=8121394; DOI=10.1007/BF00281788;
RA   Sommer K.A., Petersen G., Bautz E.K.F.;
RT   "The gene upstream of DmRP128 codes for a novel GTP-binding protein of
RT   Drosophila melanogaster.";
RL   Mol. Gen. Genet. 242:391-398(1994).
RN   [2]
RP   NUCLEOTIDE SEQUENCE [LARGE SCALE GENOMIC DNA].
RC   STRAIN=Berkeley;
RX   MEDLINE=20196006; PubMed=10731132; DOI=10.1126/science.287.5461.2185;
RA   Adams M.D., Celniker S.E., Holt R.A., Evans C.A., Gocayne J.D.,
RA   Amanatides P.G., Scherer S.E., Li P.W., Hoskins R.A., Galle R.F.,
RA   George R.A., Lewis S.E. [...]
RT   "The genome sequence of Drosophila melanogaster.";
RL   Science 287:2185-2195(2000).
RN   [3]
RP   GENOME REANNOTATION.
RX   MEDLINE=22426069; PubMed=12537572;
RA   Misra S., Crosby M.A., Mungall C.J., Matthews B.B., Campbell K.S.,

[...]

Comments
CC   -!- FUNCTION: Deformed (Dfd) is required to activate 1.28up in
CC       maxillary segment cells.
CC   -!- INTERACTION:
CC       Q9VGZ4:CG6325; NbExp=1; IntAct=EBI-163407, EBI-111903;
CC       P25724:nos; NbExp=1; IntAct=EBI-163407, EBI-106556;
CC       Q9V3H7:Sr-CI; NbExp=1; IntAct=EBI-163407, EBI-125222;
CC   -!- TISSUE SPECIFICITY: Expressed in posterior-lateral epidermis of
CC       the maxillary lobe.
CC   -!- DEVELOPMENTAL STAGE: Expressed in embryos and adults.
CC   -!- SIMILARITY: Belongs to the GTP1/OBG family.
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Database cross-references
DR   EMBL; X71866; CAA50701.1; -; Genomic_DNA.
DR   EMBL; AE003823; AAF58591.1; -; Genomic_DNA.
DR   EMBL; AY069810; AAL39955.1; -; mRNA.
DR   PIR; S42582; S42582.
DR   UniGene; Dm.7739; -.
DR   HSSP; P20964; 1LNZ.
DR   IntAct; P32234; -.
DR   GermOnline; CG8340; Drosophila melanogaster.
DR   Ensembl; CG8340; Drosophila melanogaster.
DR   KEGG; dme:Dmel_CG8340; -.
DR   FlyBase; FBgn0010339; 128up.
DR   GO; GO:0005525; F:GTP binding; IDA:FlyBase.
DR   GO; GO:0005515; F:protein binding; IPI:IntAct.
DR   InterPro; IPR006074; GTP1-OBG_dom.
DR   InterPro; IPR006073; GTP1_OBG.
DR   InterPro; IPR002917; MMR_HSR1_GTP_bd.
DR   InterPro; IPR005225; Small_GTP_bd.
DR   InterPro; IPR004095; TGS.
DR   Pfam; PF01926; MMR_HSR1; 1.
DR   Pfam; PF02824; TGS; 1.
DR   PRINTS; PR00326; GTP1OBG.
DR   TIGRFAMs; TIGR00231; small_GTP; 1.
DR   PROSITE; PS00905; GTP1_OBG; 1.

Keywords
KW   Complete proteome; GTP-binding; Nucleotide-binding.

Features
FT   CHAIN         1    368       GTP-binding protein 128up.
FT                                /FTId=PRO_0000205430.
FT   NP_BIND      71     78       GTP (By similarity).
FT   NP_BIND     117    121       GTP (By similarity).
FT   NP_BIND     248    251       GTP (By similarity).
FT   CONFLICT      2      2       S -> I (in Ref. 1).
FT   CONFLICT     34     35       KL -> NV (in Ref. 1).

Sequence information
SQ   SEQUENCE   368 AA;  41132 MW;  5B38B09D0C0A92F2 CRC64;
     MSTILEKISA IESEMARTQK NKATSAHLGL LKAKLAKLRR ELISPKGGGG GTGEAGFEVA
     KTGDARVGFV GFPSVGKSTL LSNLAGVYSE VAAYEFTTLT TVPGCIKYKG AKIQLLDLPG
     IIEGAKDGKG RGRQVIAVAR TCNLIFMVLD CLKPLGHKKL LEHELEGFGI RLNKKPPNIY
     YKRKDKGGIN LNSMVPQSEL DTDLVKTILS EYKIHNADIT LRYDATSDDL IDVIEGNRIY
     IPCIYLLNKI DQISIEELDV IYKIPHCVPI SAHHHWNFDD LLELMWEYLR LQRIYTKPKG
     QLPDYNSPVV LHNERTSIED FCNKLHRSIA KEFKYALVWG SSVKHQPQKV GIEHVLNDED
     VVQIVKKV
//
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B Example TrEMBL Entry
A typical TrEMBL entry in flat file format as an example of an incompletely annotated record in 

UniProtKB. For a better overview headlines were added to the main paragraphs.
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General Information about the entry
ID   Q9F0A8_PSESH            Unreviewed;       175 AA.
AC   Q9F0A8;
DT   01-MAR-2001, integrated into UniProtKB/TrEMBL.
DT   01-MAR-2001, sequence version 1.
DT   31-OCT-2006, entry version 20.
DE   HrpD.

Origin of the protein
GN   Name=hrpD;
OS   Pseudomonas syringae pv. phaseolicola.
OC   Bacteria; Proteobacteria; Gammaproteobacteria; Pseudomonadales;
OC   Pseudomonadaceae; Pseudomonas.
OX   NCBI_TaxID=319;

Literature References
RN   [1]
RP   NUCLEOTIDE SEQUENCE.
RC   STRAIN=1302A;
RX   MEDLINE=21065167; PubMed=11134504; DOI=10.1073/pnas.011265298;
RA   Lee J., Kluesener B., Tsiamis G., Stevens C., Neyt C., Tampakaki A.P.,
RA   Panopoulos N.J., Noeller J., Weiler E.W., Cornelis G.R.,
RA   Mansfield J.W., Nuernberger T.;
RT   "HrpZPsph from the plant pathogen Pseudomonas syringae pv.
RT   phaseolicola binds to lipid bilayers and forms an ion-conducting 
RT   pore in vitro.";
RL   Proc. Natl. Acad. Sci. U.S.A. 98:289-294(2001).
RN   [2]
RP   NUCLEOTIDE SEQUENCE.
RC   STRAIN=NPS3121;
RA   Gropp S.J., Guttman D.S.;
RT   "The PCR amplification and characterization of entire Pseudomonas
RT   syringae hrp/hrc clusters.";
RL   Mol. Plant Pathol. 5:137-140(2004).

Database cross-references
DR   EMBL; AF268940; AAF99295.1; -; Genomic_DNA.
DR   EMBL; AY530203; AAS20454.1; -; Genomic_DNA.
DR   InterPro; IPR000001; Kringle.
DR   InterPro; IPR013806; Kringle-like.
DR   PROSITE; PS00021; KRINGLE_1; 1.

Sequence information
SQ   SEQUENCE   175 AA;  20195 MW;  07FF86135EFABB45 CRC64;
     MELIAEDHWV QWWCNPWQFA HPDWQSRFAL NCGLTLSDCD GLIASRHSVF LQSVGIEPDQ
     PPMPAEPVLR WLALTPLQRE RALDLARRIC FCRNESDGAD GQWCWALTKA LRPGVWLELA
     NEDPRLLLGA WLGPEYWSRL RLAWAPDELP DSPCEAPENK LQTLWQAILW RVTAV
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C Symbols and Abbreviations
The alphabetic  list  of  Abbreviations  contains  all  used  short  notations  out  of  the  text  and also 

includes the GO evidence codes.

Symbols
event ............................................................................................... Negation, in this case: NOT event

P(event).............................................................................................................. Probability of an event

P A∣B .................................................. Conditional probability of event A under the condition of B

Abbreviations
CC.........................................................................................................................Swiss-Prot Comment

DAG..................................................................................................................Directed Acyclic Graph

EBI....................................................................................................European Bioinformatics Institute

EMBL.................................................................................... European Molecular Biology Laboratory

FN................................................................................................................................... False Negative

FP..................................................................................................................................... False Positive

FT................................................................................................................... Swiss-Prot Feature Table

GO.................................................................................................................................. Gene Ontology

GOA.................................................................................................Gene Ontology Annotation at EBI

IC .............................................................................................................................Inferred by Curator

ID .............................................................................................................................................Identifier

IDA............................................................................................................. Inferred from Direct Assay 

IEA................................................................................................Inferred from Electronic Annotation

IEP.....................................................................................................Inferred from Expression Pattern 

IGC..................................................................................................... Inferred from Genomic Context 

IGI.....................................................................................................Inferred from Genetic Interaction 

IMP.................................................................................................... Inferred from Mutant Phenotype 

IPI.................................................................................................... Inferred from Physical Interaction 

ISS..............................................................................Inferred from Sequence or Structural Similarity 

KW........................................................................................................................ Swiss-Prot Keyword
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NAS................................................................................................... Non-traceable Author Statement 

ND............................................................................................................No biological Data available 

NR................................................................................................................................... Not Recorded 

RCA.........................................................................Inferred from Reviewed Computational Analysis 

SP.......................................................................................................................................... Swiss-Prot

TAS...........................................................................................................Traceable Author Statement 

TN....................................................................................................................................True Negative

TP......................................................................................................................................True Positive

TR............................................................................................................................................ TrEMBL

TrEMBL............................................................... Translation of EMBL nucleotide sequence database

UniProtKB......................................................................................Universal Protein Knowledge Base
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D Glossary
Descriptions of some terms based on Wilsons Machine Learning Dictionary [28].

Attributes An attribute is a property of an instance that may be used to determine 
its classification. For example, when classifying objects into different 
types in a robotic vision task, the size and shape of an instance may be 
appropriate  attributes.  Determining  useful  attributes  that  can  be 
reasonably  calculated  may  be  a  difficult  job  -  for  example,  what 
attributes of an arbitrary chess end-game position would you use to 
decide  who  can  win  the  game?  This  particular  attribute  selection 
problem has been solved, but with considerable effort and difficulty. 
Attributes are sometimes also called features.

Binary Tree Binary Trees are a special kind of tree, in which every node has  at 
most 2 outgoing vertices (out-degree 2).

C4.5 C4.5 is a later version of the ID3 Decision Tree induction algorithm.

Decision Tree A Decision Tree is a tree in which each non-leaf node is labelled with 
an attribute or a question of some sort, and in which the branches at 
that node correspond to the possible values of the attribute, or answers 
to the question.  For example, if  the attribute was shape, then there 
would be branches below that node for the possible values of shape, 
say square, round and triangular. Leaf nodes are labelled with a class. 
Decision trees are used for classifying instances - one starts at the root 
of the tree, and, taking appropriate branches according to the attribute 
or question asked about at each branch node, one eventually comes to 
a leaf node. The label on that leaf node is the class for that instance. 

Directed Acyclic Graphs DAGs are graphs with no directed cycles.

Graph Technically, a (directed) graph is a set V of vertices or nodes, together 
with a set E of directed edges, which are ordered pairs of vertices. 
Graphs are widely used in computer science as a modelling tool. A 
simple example of a graph would be V = {1, 2, 3} and E = {(1,2), 
(3,1)}, which could be drawn as: 3 -----> 1 -----> 2 

A directed cycle in a directed graph is a sequence of edges (v1, v2), 
(v2, v3), ..., (vn, v1) such that the second vertex of the final edge is the 
same as the first vertex of the first edge. 

It is also possible to have undirected graphs, in which the edges are 
not  ordered  but  rather  unordered  pairs.  Consider  the  possibility of 
edges  from  a  node  to  itself  -  sometimes  these  could  be  useful, 
sometimes not.

Heuristic A heuristic is a fancy name for a "rule of thumb" - a rule or approach 
that  doesn't  always  work  or  doesn't  always  produce  completely 
optimal  results,  but  which  goes  some  way  towards  solving  a 
particularly difficult problem for which no optimal or perfect solution 
is available.
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ID3 A  Decision  Tree  induction  algorithm,  developed  by  Quinlan.  ID3 
stands for "Iterative Dichotomizer (version) 3". Later versions include 
C4.5 and C5. ID3 chooses a splitting criterion based on information 
gain.  The  criterion  achieving  the  greatest  gain  in  information 
(depending on the purity of resulting classes) will be next to split the 
dataset.

Instance An  instance  is  a  term  used  in  machine  learning  particularly  with 
symbolic learning algorithm, to describe a single training item, usually 
in  the  form  of  a  description  of  the  item,  along  with  its  intended 
classification.

In object  oriented programming an instance of a class is  a specific 
(named) object. The class of Dog defines all possible dogs by listing 
the  characteristics  that  they  can  have;  the  object  Lassie  is  one 
particular dog, with particular versions of the characteristics. A Dog 
has fur; Lassie has brown-and-white fur. In programmer jargon, the 
object Lassie is an instance of the Dog class. 

Machine Learning Machine learning is said to occur in a program that can modify some 
aspect of itself, often referred to as its state, so that on a subsequent 
execution with the same input, a different (hopefully better) output is 
produced. See unsupervised learning and supervised learning

Node A component of a graph or tree.

Over-Fitting With  large complex  sets  of  training patterns,  it  is  likely that  some 
errors may occur. In that case, and particularly in the later parts of the 
learning process, it is likely that the algorithm will  be trained to fit 
precisely around training patterns that are actually erroneous!

Supervised Learning Supervised learning is a kind of machine learning where the learning 
algorithm is provided with a set of inputs for the algorithm along with 
the corresponding correct outputs, and learning involves the algorithm 
comparing its current actual output with the correct or target outputs.

Tree Induction Algorithm This article describes the basic tree induction algorithm used by ID3 
and successors. The basic idea is to pick an attribute A with values a1, 
a2, ...,  ar,  split  the training instances into subsets  Sa1,  Sa2,  ...,  Sar 
consisting  of  those  instances  that  have  the  corresponding  attribute 
value. Then if a subset has only instances in a single class, that part of 
the tree stops with a leaf node labelled with the single class. If not, 
then the subset is split again, recursively, using a different attribute. 
This leaves the question of how to choose the best attribute to split on 
at any branch node. This issue is handled in the article on splitting 
criterion in ID3.

Tree Trees are a special kind of directed graph, in which there is a special 
node, called the root, which has no input vertex (in-degree 0). Every 
other node has exactly one input vertex (in-degree 1).
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Unsupervised Learning Unsupervised learning signifies a mode of machine learning where the 
system is not told the "right answer" - for example, it is not trained on 
pairs consisting of an input and the desired output. Instead the system 
is  given  the  input  patterns  and  is  left  to  find  interesting  patterns, 
regularities, or clusterings among them. To be contrasted to supervised 
learning,  as  in  ID3,  where  the  system is  told  the  desired  or  target 
outputs to associate with each input pattern used for training.
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