
Automatic GO Term Prediction on UniProtKB

Diploma Thesis

at

University of Applied Sciences Weihenstephan

Department of Biotechnology and Bioinformatics

Barbara Meier

23. Mar. 2007

conducted at

European Bioinformatics Institute, Hinxton, Cambridge, UK

Supervised by:

Daniela Wieser Prof. Dr. Bernhard Haubold

EMBL European Bioinformatics Institute University of Applied Sciences

Wellcome Trust Genome Campus Weihenstephan

Hinxton Dept. of Biotechnology & Bioinformatics

Cambridge CB10 1SD 85350 Freising

United Kingdom Germany

Automatic GO Term Prediction on UniProtKB

Erklärung zur Urheberschaft

Gemäß § 31 Abs. 7 der Rahmenprüfungsordnung für die Fachhochschulen (RaPO):

Ich erkläre hiermit, dass die vorliegende Arbeit von mir selbst und ohne fremde Hilfe verfasst und
noch nicht anderweitig für Prüfungszwecke vorgelegt wurde. Es wurden keine anderen als die
angegebenen Quellen oder Hilfsmittel benutzt. Wörtliche und sinngemäße Zitate sind als solche
gekennzeichnet.

Cambridge, den 23/03/2007

2

Automatic GO Term Prediction on UniProtKB

Acknowledgements

This work has been supported by a number of people in various ways. My supervisors at the EBI,

Dani Wieser and Ernst Kretschmann gave lots of food for thought, helped in many discussions and

supported wherever they could. Together with all the other colleagues there, they made the work at

the institute very enjoyable. Other support came from Prof. Haubold, my supervisor at the

University, reassuring me at a time when I really needed it and giving valuable feedback on the

monthly reports and all my questions. I received quite a different but almost even more important

help during the time I spent in England from Andi, who accompanied me through all my ups and

downs, tried to understand this work even though he didn't have a clue about the subject and helped

finding various mistakes in this text. Also from back home of course my family supported me in all

circumstances. My father encouraging me and helping through financial support, my mother in

listening and all of the family by enjoying a few days of holidays in England. Henning as a team

leader and landlord also provided an important part of the basis for this work. Living at his house

for most of my time in Cambridge was quite perfect and he made this work possible after all. Also

very valuable contribution came from Emily Dimmer and Rebecca Foulger, proofreading this thesis.

Many many thanks!

3

Automatic GO Term Prediction on UniProtKB

Contents
Acknowledgements.. 3

1 Summary.. 5
2 Introduction... 6

2.1Background... 6
2.2Prior Work...10
2.3What is GO?..12
2.4GO Annotations in UniProtKB... 14
2.5Aims of this Work...18
2.6Difficulties.. 19

3 Methods.. 21
3.1Spearmint on GO terms...21
3.2Simple Mapping..28
3.3A Complementary Approach.. 32

4 Results...42
4.1Used Measurements.. 42
4.2Comparison of the Approaches...42

5 Discussion... 46
6 Appendix...49

A Example Swiss-Prot Entry.. 49
B Example TrEMBL Entry...51
C Symbols and Abbreviations.. 52
D Glossary...54
E List of Tables...57
F List of Figures... 58

7 References...60

4

Automatic GO Term Prediction on UniProtKB Summary 1

1 Summary
Protein annotation in UniProtKB/TrEMBL is poor, however this is the largest and fastest growing

part of the Universal Protein Knowledgebase (UniProtKB), and the sequence database group at the

EBI aims to automatically enrich the information contained in it. For this purpose knowledge is

extracted out of UniProtKB/Swiss-Prot, the manually curated and well annotated part of

UniProtKB, and applied to TrEMBL. Over the last eight years, automatic annotation of different

protein attributes such as Keywords, comments and features have been successfully implemented.

This thesis investigates machine learning techniques on Gene Ontology (GO) terms in UniProtKB

based on the existing methods and also some new approaches. Spearmint, the Decision Tree (DT)

algorithm designed by E. Kretschmann [1] for Keyword prediction was tested and found to perform

unsatisfactorily on GO term prediction. A first attempt to improve GO term prediction was a simple

mapping of Swiss-Prot Keywords to GO terms. The same algorithm was also applied to an InterPro

to GO mapping. This mapping, using Bayes's conditional probabilities for rule generation, already

lead to a significant improvement in comparison to the Decision Tree approach, but also left room

for further refinement. Since manual GO annotation in Swiss-Prot provides a much less complete

information base than for Keywords and other attributes, another idea to solving the problem was to

enrich the database with additional GO terms without changing the original meaning of the

annotation. Due to missing negative associations, no machine learning algorithm can successfully

be applied to UniProtKB GO terms. Hence a further step during the enrichment process was to find

as reliable as possible GO term exclusions. That way enriched proteins were then again fed into the

existing Decision Tree.

Despite some slight improvements in comparison to the original Spearmint run due to the positive

enrichment, the results were still not satisfactory. The negative search did not produce a sufficient

number of true negative classifications. Hence GO data in Swiss-Prot has turned out to be more

difficult to use in automatic annotation than expected.

5

Automatic GO Term Prediction on UniProtKB Introduction 2

2 Introduction

2.1 Background
As more and more biological sequence data are produced automatically from high-throughput

experiments, the number of entries in databases like the Universal Protein Knowledgebase

(UniProtKB) is increasing rapidly. For example the number of entries in UniProtKB has increased

by 7% (237,288 new entries) during the short time period between two releases (9.4 on 26 th

December 2006 and 9.6 on 6th February 2007). Unfortunately most records retrieved from

automated processes lack annotations. The fraction of well annotated or manually curated entries in

protein or gene databases is decreasing at a speed directly proportional to the increasing number of

protein sequence submissions. UniProtKB is a central database containing protein sequences and

providing accurate, consistent and rich sequence and functional information where available. It is a

union of the Swiss-Prot and TrEMBL datasets and currently contains 3,766,477 protein sequence

entries1. High quality records are found in the Swiss-Prot part which holds 252,616 (~7% of the

1 Figures for UniProtKB Release 9.4 from 26th of December 2006

6

Figure 2.1: Database growth since beginning of 2004. Data out of UniProtKB release notes 1.0 to 9.7

2004 2005 2006 2007
0

250000

500000

750000

1000000

1250000

1500000

1750000

2000000

2250000

2500000

2750000

3000000

3250000

3500000

3750000

4000000

4250000

Swiss-Prot
TrEMBL
UniProtKB

Years

E
nt

rie
s

Automatic GO Term Prediction on UniProtKB Background 2.1

UniProtKB total) records with information extracted from literature and curator-evaluated

computational analysis. Most of these entries are completely annotated. But the second and far

greater part, i.e. UniProtKB/TrEMBL, holds 3,513,861 (~93% of UniProtKB total) records, which

are only computationally analysed. While awaiting manual curation and incorporation into

UniProtKB/Swiss-Prot, they are enriched with automatic annotation and classification, but

annotation is largely incomplete [2, 3, 4, 5]. Figure 2.1 visualises the development of both parts of

UniProtKB over the past few years and shows the slow increase in manually curated entries

(UniProtKB/Swiss-Prot) and the steep increase of automatically annotated protein entries

(UniProtKB/TrEMBL).

UniProtKB provides a broad range of information about proteins. Annotations describe areas such

as the function(s) of the protein, post translational modification(s), domains and sites, and secondary

structure. An example of a Swiss-Prot entry can be found in Appendix A. Entries are divided into

several topics/fields, describing the sequence in general, its organism origin, literature references

and function, as well as database cross-references. Functional descriptions in this context are for

example Keywords, features, comments and also GO terms:

• Swiss-Prot Keywords (KW) is a controlled vocabulary which is divided into 10 domains.

There are 892 distinct Keywords describing the biological functions, cellular components

and molecular processes of entries as well as diseases, coding sequence diversities, technical

terms, developmental stages, post translational modifications, domains and ligands of

proteins.

• The feature table (FT) describes regions or sites of interest in the sequence. In general the

feature table lists post translational modifications, binding sites, enzyme active sites, local

secondary structure or other characteristics reported in the cited references such as natural

variants or isoforms.

• Comments (CC) are largely free text additions to an entry and contain further useful

information about a protein. They are arranged into 27 “topics” including function,

developmental stage, tissue specificity, similarity and interaction.

• GO terms, the subject of this thesis, are arranged in a controlled vocabulary, similar to

Keywords. The 22,929 distinct terms are divided into three domains describing the

molecular process(es), cellular component(s) and biological function(s) of gene products. In

contrast to Keywords however, GO terms are arranged in a complex hierarchy. In the

UniProtKB record they are found as database cross-references. More details about GO terms

will be given later in this work.

7

Automatic GO Term Prediction on UniProtKB Background 2.1

As mentioned before, Swiss-Prot and TrEMBL differ widely at the annotation level. To show this

gap, Figure 2.2 and Table 1 visualise the distribution of the annotations named above. Each column

shows the percentage of all Swiss-Prot or TrEMBL entries holding at least one annotation of the

named type. In Swiss-Prot, Keywords, features and comments are present in 98% (248,623 entries),

100% (252,616 entries) and 96% (243,681 entries) of all records respectively. In TrEMBL 72%

(2,536,466) of the entries have Keywords, whereas only 28% (981,682 entries) show feature tables

8

Figure 2.2: Annotated entries in UniProtKB/Swiss-Prot and UniProtKB/TrEMBL
as a percentage of all Swiss-Prot or TrEMBL entries respectively. IEA is short for
”Inferred from Electronic Annotation”.

Ke
yw

or
ds

Fe
at

ur
es

C
om

m
en

ts

G
O

 T
er

m
s

(in
cl

. I
E

A
)

G
O

 T
er

m
s

(n
on

-IE
A

)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Swiss-Prot
TrEMBL

Table 1: Distribution of annotated entries in UniProtKB/Swiss-Prot and
UniProtKB/TrEMBL as absolute values and percentage of all Swiss-Prot or TrEMBL entries
respectively. IEA is short for ”Inferred from Electronic Annotation”.

Swiss-Prot TrEMBL
absolute percentage absolute percentage

Keywords 248,623 98% 2,536,466 72%
Feature Table 252,616 100% 981,682 28%
Comments 243,681 96% 1,037,020 30%

105,301 42% 2,070,472 59%
GO Terms (non-IEA) 33,624 13% 37,260 1%
All Proteins 252,616 100% 3,513,861 100%

GO Terms (incl. IEA)

Automatic GO Term Prediction on UniProtKB Background 2.1

and 30% (1,037,020 records) have comments. As per release statistics of TrEMBL and Swiss-Prot,

a typical Swiss-Prot entry contains approximately 4 comments and 7 feature annotations whereas an

average TrEMBL entry has 0.4 comments and 0.5 feature entries. Separate investigations for

Keywords showed an average of 5 per Swiss-Prot entry and 1.5 per TrEMBL entry (see Figure 2.3).

Concerning the high coverage of annotations in Swiss-Prot, this part of UniProtKB is predestined to

serve as a knowledge base for diverse machine learning algorithms to enrich TrEMBL annotations

automatically. Note that the above figures for TrEMBL already include 8 years of automatic

annotation work, generating most of the annotation in TrEMBL.

This leads to the main task of the data mining team in the Sequence Database (SeqDB) group at the

European Bioinformatics Institute (EBI), who are increasing the number of annotations in TrEMBL

using common machine learning techniques. One outcome of their work is Spearmint, a Decision

Tree (DT) algorithm that helps to extract knowledge found in Swiss-Prot. Rules generated for

different types of annotations are checked for consistency by a system called Xanthippe, and all

9

Figure 2.3: Average number of annotations per entry comparing Swiss-Prot and
TrEMBL

Ke
yw

or
ds

Fe
at

ur
es

C
om

m
en

ts

G
O

 (i
nc

l I
E

A)

G
O

 (n
ot

 IE
A)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

5.16

6.95

4.03

0.84
0.65

1.56

0.5 0.44

2.02

0.04

Swiss-Prot
TrEMBL

Automatic GO Term Prediction on UniProtKB Background 2.1

remaining rules are then applied to TrEMBL [6]. Automatic annotation for Keywords, features and

comments is implemented in this way [1, 7]. However the feature annotation pipeline is not yet in

production mode. Figure 2.2 and Table 1 show that automatic annotation of Keywords is simple

since they are in a controlled vocabulary. In contrast Swiss-Prot comments, which contain free text,

are more difficult to predict, and this is reflected in a much lower protein coverage.

For most types of annotation in UniProtKB such as Keywords, features or comments, there is no

source declaration attached directly to the database (or the flat file), so it is difficult to trace back

how many of these annotations are derived solely by computation, and which are manually curated.

The target for this work, GO terms, however does include an evidence code. The “Inferred from

Electronic Annotation (IEA)” evidence code is applied whenever a GO annotation depends directly

on computation or automated transfer of annotations from other databases. IEA is used when no

curator has checked the annotation to verify its accuracy [8]. Going back to Figure 2.2 and Table 1,

it is evident that 42% (105,301 entries) of all Swiss-Prot records have GO annotations, but only

13% (33,624 Swiss-Prot entries) have manually added or curated GO associations. Release statistics

for Swiss-Prot state that there are approximately 0.82 GO terms per average record [4], 0.65 of

which are manual GO annotations. In TrEMBL, 59% (2,070,472) of the entries have GO

annotations, corresponding to 2.02 GO terms per entry [5]. The greater number in comparison to

Swiss-Prot is not surprising because in TrEMBL all IEA techniques are included whereas Swiss-

Prot only allows the most reliable ones. Only 1% (37,260 entries) of TrEMBL entries contain

manual GO annotation giving an average count per entry of 0.04 non-IEA annotations (Figure 2.3).

The evident gap between GO annotation and other annotation types is probably caused by the

relatively late development of Gene Ontology in the year 1998, whereas Swiss-Prot was started in

the early 1980s.

2.2 Prior Work
The relatively high portion of GO annotated entries in TrEMBL can be explained by the work of

GOA, the GO Annotation Team at the EBI. GOA produces a huge amount of electronically inferred

GO annotations for TrEMBL. They also do manual GO curation resulting in a number of GO terms

which are NOT inferred from electronic annotation in addition to integrating manual annotations

from other databases. Most of the automatically produced annotations are based on simple mapping

10

Automatic GO Term Prediction on UniProtKB Prior Work 2.2

tables, for example mapping Swiss-Prot Keywords or InterPro1 signatures to GO terms [10]. These

mapping files are in part curated manually, which usually means that they are of reasonable quality

although the number of false associations has only been counted on a very small sample set of data.

As Camon et al. admit, InterPro group affiliation does not necessarily mean that all contained

proteins have the same function [10]. There are some proteins that belong into a specific group but

function differently from the other group members. Those “false positives” block an annotation of

the specific GO term, and cause curators to turn to higher level terms. Hence those GO annotations

inferred from an InterPro to GO mapping have to be treated with caution. Similarly, all more or less

static mappings have to be treated with caution2. For this reason in this work only manually curated

GO annotations will be taken into account.

Work in the field of automated protein or gene function annotation based on GO terms is not only

conducted at the EBI. Elsewhere different approaches have been developed, mostly predicting GO

terms for proteins based on sequence similarities. Uncharacterised sequences are searched against

GO mapped databases and assigned GO terms of the best hits [11, 12]. A group at the DKFZ

Heidelberg for example, applied Support Vector Machines (SVM) in combination with a homology

search to transfer GO terms to unknown sequences and classify those predictions as true or false

[13]. The system was trained on approximately 860,000 (organism wise grouped) sample sequences

and applied to Xenopus laevis genes. The combination of multiple classification results (each

organism set provided one classifier) produced predictions for about 50% of the Xenopus entries as

well as a confidence value for each prediction. Predictive rule models were developed by Hvidsten

and his group based on microarray hybridisation experiments [14]. The supervised learning

methodology predicted 647 terms based on fibroblast response data for 517 genes. These attempts to

predict GO terms, however, neglected the information contained in the hierarchical structure of GO

and an approach taking the relations between GO terms into account was used by Barutcuoglu et al.

[15].They started from protein interaction data, microarray expression data, collocalisation datasets

and transcription factor binding sites to train multiple SVMs. The hierarchy of GO was introduced

afterwards when a Bayesian Network was applied to verify the consistency of the predictions

produced . This approach showed some improvements over mere machine learning. Frederick

Roth's research group provided an approach using existing GO annotations and therefore not based

on sequence similarity data and including the hierarchical structure of GO [16]. Using the FlyBase

and Saccharomyces Genome Database (SGD) organism specific databases, they compared Decision

1 InterPro is a database of protein families, domains and functional sites in which identifiable features found in
known proteins can be applied to unknown protein sequences [9].

2 mapping tables are checked and altered in response to user feedback but are not continuously adapted.

11

Automatic GO Term Prediction on UniProtKB Prior Work 2.2

Trees and Bayesian Networks for the prediction of GO terms based on coexisting annotations of

proteins. Attributes were selected such that they had no connection between them in the GO

hierarchy so predictions were made only on completely different branches of the GO DAG. The

result: Decision Trees outperformed the conditional probabilities of the Bayesian Networks at low

false positive rates. A manual assessment of the resulting 100 predictions judged 41 of them as true

and another 42 to be plausible.

These approaches were either only implemented for low throughput analyses and are therefore not

applicable to UniProtKB, or were based only on sequence similarities, which can not take into

account knowledge involved in manual curation. Although the additional knowledge contained in

the complex relationships between GO terms is valuable and has been shown to improve

predictions, the majority of the named approaches did not consider the hierarchy of Gene Ontology.

Most approaches were also focused on a few organisms instead of providing general, organism-

independent GO annotations. One problem with GO in UniProtKB, described later in more detail, is

that there are no negative examples. None of the named approaches addressed this problem.

2.3 What is GO?
Free text descriptions of a gene or protein function tend to vary from person to person, from

database to database and from organism to organism. Natural language provides hundreds of ways

to describe the same fact, and this makes it particularly difficult to analyse automatically. Controlled

vocabularies and ontologies such as the Gene Ontology (GO) is one way to deal with that problem.

An Ontology, in terms of Artificial Intelligence (AI), is meant to explicitly specify the objects

contained in it. As Gruber defined in 1995, “an Ontology is an explicit specification of a

conceptualization” [17]. The term originates in philosophy and means a systematic account of

existence and the representation of what “exists”. This is a key feature in AI systems. The set of

existing objects are reflected in the representational vocabulary with which a knowledge-based

program represents the knowledge about the world [17].

The Gene Ontology describes gene products and consists of three different controlled vocabularies.

In general, controlled vocabularies aim to provide a carefully selected set of terms, which are used

to describe things in a uniform way. Ontologies, in extension to controlled vocabularies, also define

the relationships among those terms and represent them in a hierarchy. The intention of GO is to

address the need for consistent descriptions of the functions and subcellular location of gene

products in different databases. Functional descriptions should be uniform and comparable so that

12

Automatic GO Term Prediction on UniProtKB What is GO? 2.3

computational approaches can be applied more easily. The Gene Ontology is designed so that the

terms provide species-independent descriptions. Hence GO terms are adequate for the annotation of

molecular characteristics across organisms. The three domains of the Gene Ontology are Biological

Process, Cellular Component and Molecular Function. Since GO is an ontology, GO terms are

arranged in a complex hierarchy using two different types of relationships: “is-a” and “part-of”. GO

also allows multiple children, as well as multiple parents, for a term [18]. The resulting directed

acyclic graph (DAG) is exemplified in Figure 2.4. Red arrows denote “part-of” and blue arrows

denote “is-a” relationships between the terms. The three disjoint domains of GO are also visible.

Within the cellular component section of GO, the term “plasma membrane” is a child of

“membrane” just like “membrane part”. But the relationships to their parents are different. “Plasma

membrane” is a “membrane” whereas the “membrane part” is obviously a part of a membrane. Both

child terms are, per definition, more specific than the parent term. The rather normal fact of having

multiple children does not affect the uniqueness of paths from each term to the root node, but, as the

graph shows, allowing multiple parents for a term does. The term “membrane part” for example has

two parental terms, “membrane” and “cell part”. Hence there may be more than one path from a

child term to the root.

The Gene Ontology website provides more details [8] and GO terms can be browsed with tools like

AmiGO [19].

13

Figure 2.4: Visualization of an extract out of the GO hierarchy. Note that the most
common term is at the bottom, the most specific term at the top

membrane part plasma membrane

membrane

cell part

cell

part of

is a

cellular component biological processmolecular function

all

(A)(A)

(A)

(B)

(C)

Automatic GO Term Prediction on UniProtKB GO Annotations in UniProtKB 2.4

2.4 GO Annotations in UniProtKB
As mentioned before, only a small fraction of entries in UniProtKB have manual GO annotation.

The GOA team at the EBI is continuously providing manual curation for Gene Ontology terms, but

the number of entries in UniProtKB (and particularly in TrEMBL) is increasing at such a fast pace

that manual annotation methods cannot keep up. Most experimental data is provided for model

organisms due to both the used model organisms in the laboratories, and the major involvement of

model organism databases. For this reason, GO annotation methods also focus their attention to

those selected organisms. The graph of the distribution of GO annotations in Swiss-Prot (Figure 2.5)

shows that 92% of all entries containing manual GO annotation belong to only 13 organisms.

Whereas the remaining 8% of GO annotated entries are contributed by as many as 680 different

species. This reflects the work of the model organism groups in the GO consortium. In addition to

about 120,000 other organisms GOA itself is mainly responsible for human, cow and chicken,

whereas mouse data is contributed by the Mouse Genome Institute (MGI). Bakers yeast is

maintained by the Saccharomyces Genome Database (SGD), fission yeast originates from GeneDB,

rat data from Rat Genome Database (RGD), FlyBase provides data for the fruit fly, WormBase for

the roundworm, The Arabidopsis Information Resource (TAIR) is responsible for Arabidopsis data

and finally the Zebrafish Initiative (ZFIN) provides zebrafish data. By far the most important

14

Figure 2.5: Distribution of organisms across database entries containing GO annotations in Swiss-Prot.

Homo sapiens (Human)
Mus musculus (Mouse)
Saccharomyces
cerevisiae (Bakers
Yeast)
Schizosaccharomyces
pombe (Fission Yeast)
Rattus norvegicus (Rat)
Drosophila melanogaster
(Fruit Fly)
C. elegans (Roundworm)

E. coli
Arabidopsis thaliana
(Mouse-ear cress)
Bos taurus (Cow)
Brachydanio rerio
(Zebrafish)
Xenopus laevis (African
clawed frog)
Gallus gallus (Chicken)
680 other organisms

Automatic GO Term Prediction on UniProtKB GO Annotations in UniProtKB 2.4

organisms in the graph shown are human and mouse, which account for more than half of all

manual GO annotations in Swiss-Prot. This examination is based on absolute numbers of entries in

Swiss-Prot. The universe in this case consists of only those entries containing at least one manual

GO annotation.

Absolute numbers of records, however, do not reflect the number of records per organism, which

correlates with the proteome size of each species. So the question is, how do GO annotations cover

all recorded entries of an organism in UniProtKB? The percentages of Swiss-Prot entries containing

manual GO annotations out of all records per organism are shown in Figure 2.61. The organisms

responsible for the major part of all GO annotated records in Swiss-Prot are marked in ruby. They

are distributed over the whole range of coverages. For example the popular model organism

Arabidopsis thaliana (Mouse-ear cress) has a coverage of only 7% even though it contains

annotations from a model organism database. The maximum coverage of organism-specific proteins

in Swiss-Prot is 76% for the baker's yeast (Saccharomyces cerevisiae). Organisms in turquoise

contribute only a very small absolute number of sequences to all GO-annotated proteins in Swiss-

Prot, but nevertheless their coverage with manual GO annotations based on Swiss-Prot entries

varies between 8% and 37% (considering only fully sequenced organisms). Organisms whose

genomes are not yet fully sequenced are depicted with dashed lines2. For these, the shown

percentage of manually GO-annotated Swiss-Prot records does not reflect the coverage of the

complete proteome, but only their coverage in existing database entries. Considering their complete

proteome would result in distinguishably smaller numbers. For example, all the available entries in

UniProtKB for Tityus cambridgei (an Amazonian scorpion), currently only 25 proteins, have

manual GO annotations. These are components of its venom which were sequenced. Since about 60

components of this toxin were already separated by Mass Spectrometry methods [20], the whole

organism is assumed to have a much greater count of proteins and the coverage of its proteome

would be much smaller than 100%. The graph makes it clear that only a few of the model

organisms, like bakers yeast, fruit fly, fission yeast, human and mouse are covered by more than

50% (up to 76%) with GO terms. But in other organism-specific sequence sets, even in some model

organism sets, only about 5% have at least one GO annotation. One has to keep in mind, that this is

only a Swiss-Prot related view, which is not reflecting genome/proteome wide GO annotation.

1 Note that organisms with less than 25 Swiss-Prot entries are not included in this graph.
2 The conclusion that they are not completely sequenced yet is drawn from their absence in Integr8. The team at

the EBI provides a web site with easy access to integrated information about sequenced genomes and their
corresponding proteomes. See http://www.ebi.ac.uk/integr8.

15

Automatic GO Term Prediction on UniProtKB GO Annotations in UniProtKB 2.4

16

Figure 2.6: Percentages of GO annotated proteins in all entries per organism in Swiss-Prot. 13 organisms were
marked ruby. Those are the organisms covering 92% of all GO annotated Swiss-Prot entries. Dashed columns are from
organisms whose genomes are not yet fully sequenced.

Arabidopsis thaliana (Mouse-ear cress)
Prochlorococcus marinus (strain MIT 9313)

Gloeobacter violaceus
Prochlorococcus marinus subsp. Pastoris

Oryctolagus cuniculus (Rabbit)
Sus scrofa (Pig)

Bos taurus (Cow)
Escherichia coli

Synechococcus sp. (strain WH8102)
Macaca mulatta

Canis familiaris (Dog)
Gallus gallus (Chicken)

Synechocystis sp. (strain PCC 6803)
Xenopus laevis (African clawed frog)

Prochlorococcus marinus
Ovis aries (Sheep)

Anabaena sp. (strain PCC 7120)
Oryza sativa (Rice)

Synechococcus elongatus
Xenopus tropicalis (Western clawed frog)

Brachydanio rerio (Zebrafish)
Caenorhabditis elegans (Roundworm)

Rattus norvegicus (Rat)
Dictyostelium discoideum

Drosophila simulans
Oryza nivara

Mus musculus (Mouse)
Homo sapiens (Human)

Schizosaccharomyces pombe (Fission Yeast)
Drosophila melanogaster (Fruit Fly)

Saccharomyces cerevisiae (Baker's Yeast)
Tityus cambridgei

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Automatic GO Term Prediction on UniProtKB GO Annotations in UniProtKB 2.4

To give an overview of how the situation is with respect to the whole of UniProtKB, Figure 2.7

shows the 13 most important organisms for GO annotation in Swiss-Prot. The basis for this

examination are all UniProtKB records per organism. All but the African clawed frog (Xenopus

laevis), which is only currently being GO annotated, have completely sequenced genomes and

UniProtKB contains all known proteins of those organisms. The fraction of entries containing

manual GO annotations out of Swiss-Prot and TrEMBL are shown as well as the percentages of

entries NOT containing manual GO annotations in both parts of UniProtKB. The average coverage

of those organisms in UniProtKB with GO annotations is 22% whereas considering only Swiss-

Prot, the 13 organisms reach 35% as mean. Remarkable in this analysis is the fission yeast, which

reaches a GO annotation coverage of 84% over all UniProtKB . Next are baker's yeast (69%) and

the mouse (44%) followed by fruit fly (29%), rat (18%) and human (10%). Even underneath those

lie C. elegans (8%), E. coli (5%), Arabidopsis thaliana (4%), chicken (4%), cow (3%), zebrafish

(3%) and Xenopus laevis (2%). That shows that, even within such important model organisms, only

the yeast is more than half manually GO annotated. This is because the SGD project established a

17

Figure 2.7: The 13 most important organisms for manual curated GO annotation in UniProtKB. Each bar
represents all proteins of one organism (100%) in UniProtKB. Organisms are ordered by their absolute number of
GO annotated database records in Swiss-Prot descending from the top.

Gallus gallus (Chicken)

Xenopus laevis (African clawed frog)

Brachydanio rerio (Zebrafish)

Bos taurus (Cow)

Arabidopsis thaliana (Mouse-ear cress)

Escherichia coli

Caenorhabditis elegans (Roundworm)

Drosophila melanogaster (Fruit Fly)

Rattus norvegicus (Rat)

Schizosaccharomyces pombe (Fission Yeast)

Saccharomyces cerevisiae (Bakers Yeast)

Mus musculus (Mouse)

Homo sapiens (Human)

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

GO annotated
Swiss-Prot

GO annotated
TrEMBL

 NOT GO annotated
TrEMBL

NOT GO annotated
Swiss-Prot

Automatic GO Term Prediction on UniProtKB GO Annotations in UniProtKB 2.4

well characterised database early on (1996) [21]. Noticeable in that figure is also that for some of

those organisms great parts of manual GO annotations are not only found in Swiss-Prot but also in

TrEMBL. For mouse, Drosophila, roundworm and Arabidopsis, approximately twice as many

records (containing GO annotation) exist in TrEMBL in comparison to Swiss-Prot. This reflects that

GOA and supporting database teams do not specifically focus on Swiss-Prot but annotate mostly

independently. The philosophy behind the GO consortium curated annotation datasets is to

preferentially annotate proteins without any GO annotations (which are found mostly in

UniProtKB/TrEMBL) or as for GOA proteins which are specifically important in human health. In

contrast, the distribution of records containing NO manually curated GO annotations is as Figure

2.2 shows: TrEMBL holds many more entries, lacking GO annotations, than Swiss-Prot does.

2.5 Aims of this Work
The main aim of this diploma thesis is to investigate the methods of automatically annotating Gene

Ontology (GO) terms in UniProtKB/TrEMBL, to complement the efforts by the GOA team. The

approach aims to provide a general, organism-independent, prediction mechanism that simulates

manual annotation as reliably as possible. Machine learning algorithms on the basis of prior

annotation algorithms, developed by the data mining group at the EBI, are therefore evaluated for

their usefulness when applied on GO annotations. The knowledge about GO term associations is

extracted from Swiss-Prot, taking advantage of the rich and high quality (manual) annotation there,

with the intention of applying the resulting rules to TrEMBL. The basis of all predictions is not just

sequence data or expression experiments, but uses a variety of (manual) annotations found in Swiss-

Prot and TrEMBL. Predictions shall therefore be based on multiple sources of protein information

rather than focussing on single attributes, trying to mine as much information contained in the

database as possible. As a preparatory step, existing GO annotation will be enriched using the GO

hierarchy without changing the original meaning of the annotation. An approach to generate

negative GO associations is used to achieve a more complete knowledge base for the machine

learning algorithms. To ensure the best possible results, statistical analysis of the UniProtKB

database concerning non-existing GO terms is included. This way, the problem of missing

statements about negative GO terms will also be addressed. Since prior work showed the GO

hierarchy to be helpful for improving predictions, this work also evaluates the potential for taking

18

Automatic GO Term Prediction on UniProtKB Aims of this Work 2.5

the GO hierarchy into account during rule extraction. In comparison to the mappings of the GOA

group, the described approach takes false positive records into account and attempts to simulate

manual annotation of protein data. The algorithm will provide information about the accuracy and

confidence of extracted rules.

2.6 Difficulties
The introduction of machine learning algorithms raises the need for a good set of data as a learning

base. Data from which rules are to be learned have to be consistent and preferably complete. Take a

look for example at a given set of five entries describing people. If three of them are male, the

conclusion for the other two is obviously that they are female. This conclusion however, is derived

from the assumption that all of the five people were taken into account while classifying males. If

the person who was responsible for that classification simply forgot to include the last two people,

the conclusion that they are female no longer holds true and nobody knows if they are male or

female. Now what happens if one nevertheless tries to derive rules about those five people,

assuming that the classification was complete? A rule like “all males have short hair” could be

derived. But if the persons classified as females are actually also males and have long hair, these

rules would be wrong. The quality of those rules cannot be assessed as long as the knowledge on

which they are built is incomplete.

A similar problem occurs with GO terms in Swiss-Prot. Only 13% of all Swiss-Prot records contain

at least one manually curated GO annotation, and it is very improbable that all the other proteins in

that database do not have any function which could be represented in GO terms. It makes more

sense to assume that nobody tried to add GO terms there. But knowing that makes it clear that NO

conclusions can be derived about proteins where NO specific GO term has been added. To address

this problem, all proteins without any GO terms were excluded from the learning set. Yet even if

only those proteins with at least one GO annotation are selected as a training set, there is another

problem. There are over 20,000 distinct GO terms, describing Biological Function, Cellular

Component and Molecular Process of a protein in great detail. It is a non trivial task to consistently

annotate within the Gene Ontology. Also there are a lot of different curators annotating GO and

each of them has his/her own knowledge and preferences concerning terms. Considering only one

specific GO term out of the Biological Process domain for the moment, there are different GO

terms describing a Molecular Function or a Cellular Component which could be used in

combination. Also very often, GO terms of different granularity are applicable to a protein, so it

19

Automatic GO Term Prediction on UniProtKB Difficulties 2.6

depends on the curator and of course the experiments or analyses carried out, as to which of those

GO terms will be added and which will be omitted. The result is very inconsistent GO annotation in

UniProtKB. Once again (also in the set of proteins containing only records with at least one manual

GO annotation), not a single conclusion about a GO term NOT assigned to a protein can be made,

even if only proteins with at least one GO annotation are examined. For this reason an algorithm to

determine true negative GO annotations is vital to any GO prediction algorithm applied to Swiss-

Prot.

Addressing the problem of missing negative examples, however, does not yet solve the issue of

inconsistent and incomplete positive GO annotations in Swiss-Prot. As mentioned before, the

available knowledge about proteins differs and the policy of GO annotation states that only terms

the annotating person is absolutely confident about will be included. Additionally the curated data

of a specific protein will generally not be updated (due to the overwhelming amount of still not

annotated data) so that experiments after the date of annotation, will not be included. These facts

and the huge number of detailed GO terms, many of which are very similar, cause GO annotations

to vary in accuracy, even if the actual function of two proteins is the same. Unlike taxonomy

annotation, GO annotation is not complete. Taxonomic classification of a protein in UniProtKB

always includes the entire path from the most detailed term (a specific organism in that case) to the

root (one of the five domains of life: Archaea, Bacteria, Eukaryota, Viruses or Viroids). With GO

terms, however, only the most detailed term is assigned to a protein and the path through the

hierarchy of Gene Ontology is not included in the annotation although curators do keep in mind this

information during the annotation process.

20

Automatic GO Term Prediction on UniProtKB Methods 3

3 Methods

3.1 Spearmint on GO terms
Despite the fact that GO terms are arranged in a complex hierarchy, there is some overlap with

Keywords in Swiss-Prot. The terms, contained in a controlled vocabulary in both cases, describe the

Molecular Function(s), Biological Process(es) or Cellular Component(s) in which a protein

normally acts in a human readable form. It therefore stands to reason that an algorithm which

successfully predicts Keywords is also, in an adapted form, usable for GO terms. As mentioned

before, the data mining group at the EBI has developed a machine learning process, automatically

predicting Swiss-Prot Keywords on TrEMBL, based on knowledge filtered out of Swiss-Prot. The

system used is a Decision Tree implementation embedded in a State Machine.

C4.5 Decision Tree
The Decision Tree algorithm is a popular machine learning concept. It aims to describe an existing

set of objects in terms of a selected target attribute. The main idea behind it is the “Divide and

Conquer” mechanism. The original set of objects is divided by a decision based on one attribute of

the objects. Each subset is then again divided until every subset is uniform and holds only objects of

one type. The quality of a Decision Tree is measured by its length, i.e. the number of levels it has.

Therefore a good Decision Tree tries to classify all objects of the universe with as few decisions as

possible. The example in Figure 3.1 shows this for a set of five people. Three of them are male

(Jack, Bert and Bob), and two are female (Anna and Maria). The task of the Decision Tree is to

figure out what distinguishes the male from the female. It is provided with three attributes

describing the people, one attribute is describing the length of their hair, one their finger nails and

the other one tells if a person has glasses or not. A very simple algorithm randomly picks one of

those attributes, lets say “long hair”, and divides the group of people into two subgroups, those

persons having long hair (this branch is marked with a '+' in the graph) and those NOT having long

hair (branch marked with a '-'). Since the first subgroup (containing Anna, Jack and Maria) is still

not uniform, the division has to be repeated. Again picking a randomly chosen attribute, let's say

“painted nails”, results in two more groups. This time every subset is uniformly male or female and

the algorithm terminates. But this is not necessarily the Decision Tree describing the dataset in the

shortest possible way. In our data for example was one attribute, the “glasses”, describing male and

female persons on its own. The selected dataset would be divided into uniform groups by only one

decision using this attribute. But finding the ideal Decision Tree for a set of data is a non trivial

21

Automatic GO Term Prediction on UniProtKB Spearmint on GO terms 3.1

problem, especially considering big datasets with many attributes. The number of possible Decision

Trees for one dataset is finite but very large so that trying all those possibilities would take too long

for big data sets [22]. Several heuristic approaches try to solve this problem by producing a

Decision Tree that is not necessarily the best one for a given dataset but in general performs

reasonably well on real datasets. One of them is the very popular Decision Tree induction algorithm

called ID3 [22]. It maximises the “information gain” for each decision. The attribute achieving the

greatest information gain will be chosen for the next division of the universe. Information gain takes

into account the relative numbers of each target type per resulting subgroup. Since all male persons

in our small example wear glasses and the female do not, the test on attribute “glasses” has a much

higher information gain than the test on “long hair” which results in a group containing both types

of persons.

However, ID3 is not suitable for all datasets. One major drawback is that it can only handle binary

attributes. But it is easy to find examples of non binary, numerical attributes. Describing people is

for example much easier when including continuous attributes like size or weight. A quite simple

enhancement of ID3 to address this problem is the C4.5 algorithm [23]. This sorts the objects in the

22

Figure 3.1: A simple example for a dataset and one possible (not ideal) resulting
Decision Tree. The rule extracted here is: IF long hair AND painted nails THEN
female

Anna, Jack, Bert, Maria, Bob

Anna, Jack, Maria Bert, Bob

Long Hair?-+

Anna, Maria Jack

+ - Painted Finger Nails?

Long hair Glasses Painted nails Female

Anna Yes No Yes Yes

Bert No Yes No No

Bob No Yes Yes No

Jack Yes Yes No No

Maria Yes No Yes Yes

Automatic GO Term Prediction on UniProtKB Spearmint on GO terms 3.1

universe according to their numerical value for the current attribute and finds the best threshold to

maximise the information gain when dividing the universe into a group with lower or equal values

of the attribute and a group having higher values of this attribute.

Another problem all Decision Trees have in common is that of over fitting. It is possible that the

described algorithm produces Decision Trees which describe each single object of a set in its own

group of size one. A Decision Tree would then have many long branches instead of a rather bushy

outline, so the achieved knowledge representation is not as comprehensive as desired. A good

representation of the information contained in a dataset groups similar items of the universe into as

big as possible, yet distinctive subsets. The basic C4.5 algorithm can be extended to solve this

problem in a very simple way. For reasonable Decision Trees, a minimum number of instances per

node is introduced. Splits not fulfilling this condition will not be conducted.

An additional measurement of the quality of a tree is its classification ability. Therefore, the number

of true and false classifications at all nodes using the training set are evaluated. But considering only

instances the learning process the tree was based on, does not necessarily represent the behaviour of

that tree with unknown data. The general approach to that problem is simply withholding some of

the known instances and training the Decision Tree on the remaining ones. The excluded part of the

known instances is subsequently used for testing and measuring the quality of the resulting

classifier. One problem with this approach is that the learning process will then be based on a lower

number of instances and not on the entire knowledge available. In small datasets this can lead to too

small training sets not representing the universe any more. A common method to address this issue

is Cross Validation. This is based on repeating the above “holdout” method dividing the dataset into

a number of equal groups. Training and testing then takes place iteratively, complementing the

knowledge from each training set by changing the test group with each iteration. So in the end,

every instance is used for learning and also for testing.

To measure the quality of a single node, a confidence value is calculated using the numbers of

correctly and incorrectly classified training instances. Table 2 shows the confusion matrix, the

definition of True Positive (TP), False Positive (FP), False Negative (FN) and True Negative (TN)

23

Classified as true Classified as false
True True Positive False Negative

False False Positive True Negative

Table 2: Classification of correct and incorrect predictions

Automatic GO Term Prediction on UniProtKB Spearmint on GO terms 3.1

classifications. A classification is True Positive if an instance was classified as true and also the real

value of the examined attribute is true. The opposite applies to True Negatives. If an instance was

classified as true but is really false, it is called False Positive and if the classification was false but

the real value was true it is a False Negative. The aim of any machine classification algorithm is to

achieve many true classifications while maintaining a low number of false classifications.

These named values represent the classification of the known dataset. What really interests,

however, is how the Decision Tree performs on unknown data. But naturally it is not known

whether a classification of an unknown instance is correct or not. So the performance on new data is

estimated, based on the performance with the known test set. The derivation of this confidence

value is described in detail by Witten and Frank [24]. The confidence of a Decision Tree has to be

based on the number of instances in the test set. The more instances that were tested on the tree, the

greater is the probability that the observed performance also describes the performance on unknown

data quite well. Formula (1) shows the calculation of the confidence value. It is derived from p, the

precision of the node (Formula (2)), n is the number of instances at the current node classified as

positive (3), and a constant z. Note that negative classifications were ignored here because the

primary aim is to predict, not to contradict, GO terms even if false negative classifications represent

missed true positives.

confidence=
pz 2−z∗ p

n
−

p2

n


z2

4n2

1 z2

n

(1)

precision= p= TP
FPTP (2)

n=TPFP (3)

The constant z is dependent on a threshold which expresses the percentage of cases where the real

performance is correctly represented in the training environment. So the confidence value using z

for 95% stands for the relation of TP to FP on a node which will be observed in 95% of all cases

where the tree is applied in the real world. A confidence value of 1 therefore means that in 95% of

all cases only True Positive classifications are assumed to result from the current tree with real

(unknown) objects. A value of 0 is the worst case, in which in the real world only False Positive

classifications will be expected in 95% of all cases. By having this confidence value for each node,

24

Automatic GO Term Prediction on UniProtKB Spearmint on GO terms 3.1

it is possible to introduce quality controls. So the existing algorithm (implemented in the Kraken

framework which was used for this work) excludes all nodes with a confidence less than a specified

threshold.

Even with all those extensions, Decision Trees are computationally relatively inexpensive,

considering the training phase as well as in terms of application. They are capable of dealing with

large datasets, which is one reason why they are suitable for high-throughput Keyword prediction on

Swiss-Prot. Rules extracted by the algorithm are easy to understand and human readable, which

makes them easy to revise and evaluate for curators. But there are some drawbacks as well.

Decision Trees are not able to handle non-categorical target attributes and too many, especially

numerical, attributes can lead to very complicated trees. Another disadvantage of Decision Trees is

that they can only separate linearly, which leads to a lot of incorrect classifications on non-linearly

separable datasets. They also work best with datasets where negative and positive examples are

roughly equally distributed.

Spearmint Pipeline
Spearmint for Keyword prediction uses the described Decision Tree, working with several protein

attributes found in TrEMBL. Since the rules generated shall be applied to TrEMBL, only attributes

also found there can be used. General information found in every TrEMBL entry includes

taxonomic classification, InterPro group and InterPro matches. InterPro is a resource for protein

families, domains and sites and currently combines 10 protein signature databases including Pfam,

ProDom, PROSITE and TIGRFAMs. Signatures describing the same protein family or domain are

grouped into unique InterPro entries with an accession, description and some cross-references as

well as annotations [9, 25]. An InterPro group therefore refers to one of those protein families or

domains whereas the InterPro match means a single match of a signature. Those attributes are used

as attributes for the Decision Tree targeting Keywords.

This machine learning algorithm is embedded in a pipeline of processes in the form of a state

machine. Several states, each processing a product in a specific way, can be put together in varying

order. This way, loading protein data, preprocessing them, splitting, learning and testing can all be

done in a separate state, each delivering its result to the product and forwarding it to the next state.

This results in a very flexible approach to the data mining process. If for example the dataset has to

be changed, only the loading state has to be replaced. Or for using a different splitting algorithm

instead of Cross Validation, only the splitting state is affected. A typical Keyword prediction state

machine is schematically shown in Figure 3.2. A loader state is in charge of loading the known

dataset into a product, which will be processed by the following states. To achieve a high quality

25

Automatic GO Term Prediction on UniProtKB Spearmint on GO terms 3.1

learning base, a filter state filters all fragmented or hypothetical proteins. Then the splitter state

divides the dataset into a training set and a test set of protein data. The Attribute finder state

assembles a list of available attributes out of the dataset. This process can be narrowed to some

desired attribute types (for example TrEMBL attributes). Since a Decision Tree has to be generated

for each target (i.e. for each single Keyword in our case), a target selector state extracts all existing

target values and selects one per iteration. For this target, a learner state (the C4.5 algorithm in our

case) builds a classifier which is supplied with a confidence value and then tested in the applier state

with the hold back test set. During this process, predictions and contradictions are added and stored

with the proteins where applicable. The next step is to go back to the target finder state and repeat

the learning and application step for each remaining target. When all target values have been learned

and the resulting trees have been tested, the evaluation state summarizes the performance of the

algorithm over all classifiers with the help of the product. This is now holding all information about

predictions and contradictions as well as the original information of each protein. Note that in this

simple example no Cross Validation is included.

26

Figure 3.2: A simple sequence of states for data mining. This work flow does not include Cross-
Validation.

LoaderState

FilterState

SplitterState

AttributeFinderState

TargetSelectorState

LearnerState

ApplyerState

EvaluatorState

loads protein data

filters unsuitable data

splits into training set and test set

finds all attributes rules shall be based on

selects the current target attribute

learns the classifier

applies the test set to the tree

combines the evaluation results of each iteration

no more targets

Automatic GO Term Prediction on UniProtKB Spearmint on GO terms 3.1

For simplifying the adaptation of Spearmint, every action on a ProteinData object is modelled as a

Command. These Commands have an execute method which takes an Object of some type and

performs specified actions on it. The Java 5 option of using generics1 is very helpful at this point. It

enables the Commands for example to also work on Collections of various Java types. But

additionally in Spearmint all those execute methods have a specified return type. Commands for

testing, e.g. whether a protein has a specific GO term annotated, return booleans. The procedure of

using Commands is similar to a known design pattern in programming, the “Visitor Pattern” [26].

GO Integration
In order to adapt the existing system, GO terms had to be integrated and retrieved from the database

first. The existing Java class holding all information of one UniProtKB entry (ProteinData) only

contained part of the GO database cross-references. Hence a new system to integrate GO

annotations with all their information was implemented. EBI internally maintains a database table of

protein to GO relations, which is updated regularly from the Gene Ontology database. Amongst

other columns, this table also contains one column for UniProt accession numbers, one for

corresponding GO ids and one for the evidence code of each GO association. This table is read in

automatically and each line is transformed into an instance of the Java class GoAnnotation. Those

GoAnnotations are grouped into lists per UniProt accession number and stored in a Java HashMap

having the accession number as key and the list of GoAnnotations as value. This HashMap is then

stored as a serialised GO annotation cache for easy access through the ProteinData. The whole

procedure is depicted schematically in Figure 3.3. With the help of the resulting cache it is very easy

to retrieve GO annotation information for each protein (by loading the cache into memory and

querying it with the UniProt accession) and to store those GoAnnotations in the existing

ProteinData object when needed.

Once the GO annotations were included in the ProteinData object, it was possible to adapt the

Spearmint algorithm for GO prediction. An additional filter Command was implemented to filter

out all proteins not containing any GO annotations. For the remaining proteins it was assumed that a

GO term not annotated is a negative statement about the function of a protein. So the mentioned

problem of missing negative associations was ignored in this first approach. Also the

TargetSelectorState (remember Figure 3.2) was adapted to find all distinct GO terms in the dataset.

The modular construction using states and commands made this simple. With the aim of comparing

Keyword and GO term prediction with Spearmint, a fairly small training set of proteins was chosen.

1 Generics allow a type or method to operate on objects of various types while providing compile-time type safety.
It adds compile-time type safety to the Collections Framework and eliminates the drudgery of casting. See
http://java.sun.com/j2se/1.5.0/docs/guide/language/generics.html for more information.

27

Automatic GO Term Prediction on UniProtKB Spearmint on GO terms 3.1

Two large InterPro groups, Kringle proteins (IPR000001) and Connexins (IPR000500) containing

78 and 85 Swiss-Prot proteins were used. After the filtering step (filtering proteins without GO

terms, hypothetical proteins and fragments) 63 proteins remained. With those, a standard Spearmint

run was started for Keywords as well as for GO terms.

3.2 Simple Mapping
The Spearmint Decision Tree algorithm could, in comparison with the Keyword run, not predict GO

terms on the selected training set of proteins with a sufficient quality (detailed results described in

Section 4.2). Therefore an alternative approach had to be found. Swiss-Prot Keywords and GO

terms are very similar even if the Gene Ontology has a far wider variety of terms. On some Swiss-

Prot entries, the annotated Keywords are identical to the GO terms. Proteins for example can have

the Keyword 'Gap junction' and also the GO term 'gap junction' (GO:0005921) attached. Hence a

first idea was to use the obvious relationship between them and to investigate how a statistical

approach performs in comparison with the GOA Keyword2GO mapping.

28

Figure 3.3: The simplified build procedure for the GO annotation cache.

...
Prot1 GO:789234 IEA ...
Prot1 GO:987432 TAS ...
Prot2 GO:123678 ISS ...
Prot2 GO:987654 IEA ...
Prot2 GO:003457 IDA ...

...

Acc GoId GoEvidence

Protein2Go

GoAnnotation
(Id, Term, Evidence,
 UniProtAcc)

GoAnnotation
(Id, Term, Evidence,
 UniProtAcc)

GoAnnotation
(Id, Term, Evidence,
 UniProtAcc)

GoAnnotation
(Id, Term, Evidence,
 UniProtAcc)

GoAnnotation
(Id, Term, Evidence,
 UniProtAcc)

GoCache

List<GoAnnotation>
Value Key

Prot1

List<GoAnnotation> Prot2

database table Java objects Serialized HashMap

...

... ...

...

... ...

... ...

Automatic GO Term Prediction on UniProtKB Simple Mapping 3.2

The aim was to find out which manually annotated GO terms in Swiss-Prot appeared repeatedly in

conjunction with a specific Keyword on a protein. To detect the direct relationships between

Keywords and GO terms and to convert them into reliable rules, Bayesian statistics were applied.

The Bayesian rule for conditional probabilities, shown in formula (4) allows the calculation of the

probability of a GO term conditioned on the existence of a Keyword annotation. This formula

represents the probability that a specific GO term, let's say 'gap junction', will be annotated

whenever a specific Keyword, say 'Gap junction', is already annotated. The pipe '|' in the formula

denotes 'on condition that' and the notation P(X) is read as the probability P of an event X.

PGO∣keyword =P keyword∣GO ∗PGO
Pkeyword 

(4)

As seen in (4), the Bayesian conditional probability can be computed with the help of three different

probabilities. These are the probability of a Keyword being present if a GO term is already

annotated, P(Keyword|GO), the probability of the specific GO term annotation being present in all

proteins, P(GO), and the probability of the specific Keyword in all proteins, P(Keyword). This

formula can be rearranged to one which only needs two of those probabilities, using the fact that the

probability of having a GO term and the probability of NOT having the GO term annotated sum to

1. Formulas (5), (6) and (7) show the conversion of this fact into a form, which is then used to

divide formula (4). Negation of a variable is shown through a horizontal line above the variable

name.

PGO∣keyword PGO∣keyword =1 (5)

P keyword∣GO ∗PGO
Pkeyword 


P keyword∣GO∗P GO 

P keyword 
=1 (6)

P keyword∣GO ∗PGOPkeyword∣GO∗P GO 
P keyword 

=1 (7)

Since division by 1 does not change the original value, the result of that division still represents the

conditional probability of a GO term. This is shown in formula (8). Now it is obvious that

P(Keyword) can be cancelled from that fraction. What remains is the calculation of the conditional

probability without the need to calculate P(Keyword) and only using P(Keyword|GO) and P(GO),

29

Automatic GO Term Prediction on UniProtKB Simple Mapping 3.2

whilst taking the corresponding negative probabilities into account (9). The probability of a specific

Keyword, which is not easy to calculate, is no longer necessary and all other probabilities can be

estimated by counting directly from the dataset.

PGO∣keyword =

Pkeyword∣GO∗PGO 
P keyword 

P keyword∣GO∗P GO Pkeyword∣GO ∗PGO
P keyword 

(8)

PGO∣keyword = P keyword∣GO ∗P GO
Pkeyword∣GO ∗PGOP keyword∣GO∗P GO 

(9)

The same result may also be achieved by simply counting all proteins where the Keyword is

annotated, and then out of these counting the proteins where the GO term is also available and

divide the latter by the former. Table 3 shows this for a very simple example. For each (mock)

protein the existence of a GO term X and/or Keyword Y is marked by a tick. Proteins one to five

have the GO term annotated, and proteins two to five also have a Keyword association. Only a

Keyword annotation is found for proteins nine and ten. By counting the co-occurrence of GO term

and Keyword and dividing this by the number of Keyword occurrences, we get a result of rounded

0.667 for the probability of having the GO term X annotated, if Keyword Y is already present.

Using the derived formula to calculate this probability yields the same result (10).

PGO X∣keyword Y =

4
6
∗

5
10

4
6
∗ 5

10
2

6
∗ 5

10

=
4
6
≈0.667 (10)

30

Table 3: An example distribution of GO term X
and Keyword Y on ten proteins

Protein GO X Keyword Y
1  -
2  
3  
4  
5  
6 - -
7 - -
8 - -
9 - 
10 - 

Automatic GO Term Prediction on UniProtKB Simple Mapping 3.2

The advantage of the derived formula is that it is extendible to more than one condition. It is

possible to calculate the conditional probability of a GO term depending on more than one

annotation in the future. Therefore a conditional probability for each additional attribute, like

P(comment|GO) or P(comment| GO) respectively for comments, for example, had to be inserted

into the formula (9) at each product. This would then look like formula (11). One has to keep in

mind, however, that this calculation assumes independence between all used attributes, which does

not represent the true state of the data. But such assumptions perform, in general, reasonably well on

real data. The formula however now contains three more calculation steps and three more counting

steps for just one additional attribute. It is easy to see that this leads to a time consuming and

computationally expensive calculation, if a greater number of attributes is to be taken into account.

PGO∣AB= P A∣GO∗P B∣GO∗P GO 
P A∣GO ∗PB∣GO∗PGOP A∣GO ∗PB∣GO ∗PGO

(11)

The calculation (adapted from Witten and Frank, 2000 [24]) also shows, that not only positive

examples but also negative examples (where no GO term is annotated) are taken into account. What

also emerges from the small example is that cases where the GO term is annotated but the Keyword

is not, do not influence the result. Keeping the much greater variance of GO in mind, however, one

can assume that a single Keyword is often expressed through more than one GO terms. Hence, the

examples where a Keyword is not associated with the current GO term are not as important as the

converse, because it may possibly be covered by another GO term. Thereby the disadvantage of this

method is that lots of information contained in the database is likely to be discarded. Simplistic

approaches like this one are, however, still often quite successful.

Using this calculation for each possible combination of a Swiss-Prot Keyword and a GO term leads

to rules of the form: IF Keyword Y THEN GO term X, and provides a measurement for the

reliability of each possible rule. A set of Keywords, leading to a minimum probability of 80% is

then selected for each GO term, and a protein associated with one or more of those Keywords gets

the GO term predicted. Contradictions of GO terms are made for every protein which have none of

the Keywords attached. In comparison to the GOA Keyword to GO mapping, this approach is not

static. This means that information found in “false positive” examples, where a GO term is not

annotated but the Keyword is, are taken into account during the calculation and decrease the

confidence value of a rule.

31

Automatic GO Term Prediction on UniProtKB Simple Mapping 3.2

The naïve Bayesian principle works for different kinds of annotations. Since Keywords in TrEMBL

are mostly derived by automatic annotation, and are therefore not manually curated, their usage

could easily lead to a proliferation of erroneous annotations. InterPro groups were therefore also

tested to predict GO terms in the same manner. An advantage of the described principle is that each

rule is provided with a confidence value which makes it easy to pick only reliable rules.

3.3 A Complementary Approach
Since the Decision Tree approach left room for improvement and Simple Mapping tends to be

rather complex for more than a few attributes, a complementary method was considered. Machine

learning algorithms rely on the quality of the dataset on which they are based. Chapter One of this

thesis already describes the drawbacks of the current state of the database, namely that GO terms are

inconsistently annotated in UniProtKB and still have poor coverage. The hypothesis of the

following approach was that a more consistent training set can enhance GO term predictions.

Positive Enrichment
The level of detail of GO terms assigned to similar proteins tends to vary. However, they often

originate in the same lineage or are related to each other by only a few steps in the GO graph. Only

the most detailed adequate GO term per protein is annotated in UniProtKB, so the relationships

between the entries are not immediately obvious. Consider for example a set of proteins that have

GO annotations of one and the same lineage. Any machine learning algorithm using only the

existing annotation will have difficulties to find the information hidden in there. The group of

proteins will not be detected as having comparable function and no rule will be built for it. But it is

desirable to at least find a rule grouping those proteins under the most specific common term.

Therefore a complete annotation, in terms of annotating the whole path from the detailed terms to

the more general ones is needed. This raises an additional problem: considering the two different

relationships in GO, paths from a specific term to a more general one do not necessarily mean that

the specific term is an instance of the more general term. It is also possible that a path is interrupted

by a “part-of” connection which results in a term not being an instance of the higher level term any

more. For example, taking a look back at Figure 2.4 it is not correct to assume that “membrane” is a

“cell” but “membrane” is part of a “cell”. Considering all (consecutive) child terms (A) as instances

of the most general term (B) in a path of only “is-a” connections, and also imagining this parent

term (B) to be a “part-of” child of some other term (C), it is always true that all children (A) of the

term (B) are “part-of” term (C).

32

Automatic GO Term Prediction on UniProtKB A Complementary Approach 3.3

In terms of protein annotation however, the situation becomes more difficult. Imagine for example

that the term “plasma membrane” is annotated to protein X. Using the rule above would allow you

to annotate “part-of” “cell” to that protein as well. But since the GO annotation in UniProtKB does

not include these qualifiers, the information about the connection between GO terms will be

dropped. On the other hand, annotating the GO term “cell” without the qualifier to a protein which

is originally only found in the plasma membrane of a cell is wrong. Taking a look at “is-a”

relationships in comparison shows that it is possible to additionally annotate a parent term without

changing the original meaning of the annotation. The protein above for example is found in the

“plasma membrane”, which is-a “membrane”. So it is also true to say, that the protein localises to a

membrane. Adding terms of higher levels is therefore allowed for “is-a” parents but not for “part-

of” parents if the meaning of an annotation is to remain unchanged. Is has to be mentioned that

since January 2007, Gene Ontology is “is-a complete”. That means that every GO term has now at

least one “is-a” parent and therefore a complete “is-a” path to the root.

33

Figure 3.4: Four simple examples for proteins functioning similarly. Each tree simplifies the GO
hierarchy. The originally annotated term is marked by a red circle. Black circles denote parental terms
which can be additionally annotated without changing the original meaning of the annotation. Note that
only “IS-A” relationships between GO terms are considered at the moment and the multiple parent
characteristic of GO is not represented here.

b)

c)

A

B C

D E F G

A

B C

D E F G

d)

a)

A

B C

D E F G

A

B C

D E F G

Automatic GO Term Prediction on UniProtKB A Complementary Approach 3.3

Hence the positive enrichment approach aimed to complement the existing annotation using the GO

hierarchy. Figure 3.4 shows what this means (note that only “is-a” connections are considered here).

Four similar proteins have different GO annotations (denoted by a red circle) but those annotations

are not far apart from each other concerning the hierarchy of the GO DAG. Proteins a) and b) are

annotated at the same level of detail with sibling terms, but parental terms of their original GO

annotations (black circles in the graph) are the same. For protein c), a more general annotation was

made, since knowledge about that protein is not as detailed as for a) and b). However considering

the parental terms in cases a), b), and c) shows that all three play a role in a process B (when

considering only biological process, the same is true for cellular component or molecular function),

and also an even more general process A. Protein d) has a GO term in a different branch annotated,

but it still has process A in common with all other proteins when parent terms are considered. A

machine learning algorithm should be capable of extracting the information that proteins a), b), and

c) play a role in process B. Even though the rule is not as detailed as if it predicted more specific

processes D or E, but the more general rule is still better than exporting no rule at all about these

proteins, which is the result if the GO hierarchy is not taken into account.

The approach should enrich the annotation of a protein by adding all “is-a” parents of original GO

annotations to the protein. For this purpose, the Gene Ontology graph containing the hierarchy and

the different relationships between terms had to be imported into the data mining system (named

Kraken). The Gene Ontology provides its users with a database containing not only the terms itself

but also the relations between them. It is only one single table describing those relationships named

GoRelations. It maps child GO ids to parent GO ids and also defines the relation type between them.

Figure 3.5 shows a simplified example where all relationships between four terms are contained in

three lines of the table described . Both multiple children relations and multiple parent connections

are included in a very simple way. This database table has to be converted into a DAG

representation in Java. The GO database provides another table, containing all distinct GO terms

with their ID, the term itself and its category (molecular function, biological process or cellular

component). Similar to the process of making GO annotation accessible for Java classes the

database tables are read out and converted into Java objects. GoGraphLoader first retrieves the

different terms, creates a GoTermNode for each and stores it in a HashMap using the GO ID as a

key. A GoTermNode contains the term itself and a List of parental GO IDs as well as a List of child

IDs for each type of relation. These lists are then filled by traversing the GO relations table. For

each line a relation is added to the GoTermNode of both GO IDs involved. In the example given,

the first line of the table creates a parent for GO:1 and a child for GO:3 by adding the corresponding

34

Automatic GO Term Prediction on UniProtKB A Complementary Approach 3.3

GO IDs to their list of “is-a”-children or “is-a”-parents, respectively. Once this is done, the DAG in

form of the generated HashMap containing GoTermNodes by their IDs can be serialized and stored

for further use.

After that, an extended ProteinData object was implemented which is filled with all existing

information per protein. Then a simple loop iterates through the GO DAG retrieving all “is-a”

parents of the existing GO annotations and adds them to the ExtendedProteinData. This enriched

protein can now be used for machine learning. Having “annotated” additional positive GO terms on

the proteins provides a more complete GO annotation in terms of combining general and detailed

GO terms similar to the taxonomy classification in UniProtKB. Machine learning tools can now

find rules about more general GO terms that proteins may have in common.

Negative Enrichment
The other big previously mentioned problem with UniProtKB GO annotation, the missing negative

examples, is not yet addressed, and a way to detect such negative examples had to be found.

Following the Xanthippe rule exclusion approach (see [6]), a statistical analysis of the data was

carried out. To extract as many reliable true negatives as possible from UniProtKB/Swiss-Prot, the

rules had to be based on observed rather than predicted data. For this reason, taxonomy

classification in proteins was chosen to build exclusion rules for GO terms. An exclusion rule

excludes, for example, the GO term “nucleus” for all proteins classified as bacterial proteins. In

addition, exclusion rules should be as general as possible. For example, if no bacteria have the GO

term “nucleus” then only one rule excluding the term for bacteria should be generated and not a rule

for every group of bacteria, for example proteobacteria.

35

Figure 3.5: Representation of the GO relations in the
database. The shown graph is entirely mirrored in the table.

Child ID Parent ID Rel Type
GO:1 GO:3 is-a
GO:1 GO:4 part-of
GO:2 GO:4 is-a

GO:3 GO:4

GO:1 GO:2

part-of

is-a

Automatic GO Term Prediction on UniProtKB A Complementary Approach 3.3

To extract rules like this from UniProtKB/Swiss-Prot, a statistical approach based on the proteins

having at least one GO term annotated was chosen. GO terms inferred from electronic annotation

are again discarded, i.e. only manually curated GO terms are taken into account. If a GO term is not

found in combination with a specific taxonomy classification and the probability for this case is

lower than an empirically determined threshold, a rule is exported. The probability of not observing

a single GO term X in all proteins belonging to a taxonomy Y is simply calculated assuming

binomial distribution of the number of GO terms observed in all trials (i.e. a uniform probability p

over all trials). Formula (12) shows the general formula for calculating the probability of achieving

exactly k successes in a sequence of n independent experiments, each of which succeeds with

probability p [27]. In terms of an urn experiment, a taxonomy to GO exclusion might be phrased:

“When drawing all proteins belonging to a specific taxonomy out of the complete protein set, we do

not observe a specific GO term. Is the probability for this case low enough to export an exclusion

rule?”. Exclusion rules should be extracted if a GO term does not exist within a specific taxonomy,

hence in formula (12) k is set to zero. n is the number of proteins belonging to a taxonomy

classification, p is the probability of observing a GO term, and X is the 'success' of having a specific

GO term annotated. The probability of that GO term is estimated by its relative frequency in the

complete set of proteins. If k equals zero, formula (12) can be converted into formula (13) which is

much easier to calculate.

P X =k =n
k pk 1−p n−k (12)

P X =0=1− pn (13)

One drawback of this calculation is the assumption of a binomial distribution, which presumes that

the probability p does not change during the sequence of n experiments. Again in terms of an urn

experiment this would mean sampling with replacement. As each protein should only be considered

once this is not true in our setting. The hypergeometric distribution describes sampling without

replacement and is therefore more suitable in this case. Formula (14) shows the probability of

observing k times the GO term X in a specific taxonomy using the hypergeometric distribution. M

denotes the frequency of a specific attribute (GO term annotated) in the whole set, N is the number

of elements in the urn (all proteins having at least one GO term) and n is the sample size, which is

the frequency of the current taxonomy classification in our setting. Again, k is set to zero making

36

Automatic GO Term Prediction on UniProtKB A Complementary Approach 3.3

the calculation a bit easier, which is shown in formula (15). Note that M in this calculation

represents the number of successes in the whole set of elements, which is directly proportional to

the probability of success used in the binomial calculation.

P X =k =
M

k N−M
n−k 

N
n 

(14)

P X =0=
N−M

n 
N

n 
(15)

The main problem using the hypergeometric distribution is its mathematical complexity. Even for

formula (15) there are still two binomial coefficients to be calculated which easily result in greater

values than a Java “double” can hold (a solution with Java “BigDouble” was implemented for this

reason but not used for the reasons described in the following paragraph) or a normal pocket

calculator can calculate with. But if the sample size n is relatively small in comparison to the size of

the complete set of proteins (n/N<0.05), the binomial distribution can be used as an approximation

to the hypergeometric distribution. This is visualised in Figure 3.6. Lines represent the probability

of observing exactly the same ratio of success to failure in the trial set, which is also found in the

whole dataset, or in other words the accuracy of the testing method depending on relation of the

number of elements n drawn from the dataset to its size N. The figure shows two lines for each case

out of a set of selected probabilities of success. Dashed lines are calculated by assuming binomial

distribution (with replacement). The solid lines result from the same probability calculated with

hypergeometric distribution (without replacement). The hypergeometric distribution is much more

accurate for greater ratios n/N. The graph approaches a probability of 1 for cases where all elements

of the urn were tested, and this is exactly what is expected. At the other end of the range, where n/N

becomes very small, the two lines for each probability of success more and more approach each

other. The common rule of taking a ratio n/N < 0.05 or 0.1 as a limit for the use of binomial

distribution as approximation to the hypergeometric distribution can be confirmed here. Another

graph however shows the distance between both calculations in the only case used in this work:

where k is zero (see Figure 3.7). Depending on the frequency of “successes” in the whole dataset

(the frequency of a specific GO term in our case), which directly influences the probability of a

37

Automatic GO Term Prediction on UniProtKB A Complementary Approach 3.3

38

Figure 3.6: Comparison of binomial (b, dashed) and hypergeometric (h, solid) distributions for different
probabilities of success. The shown graphs represent the probabilities of observing exactly the same ratio of
success to failure as the real ratio is in dependency to n/N. Note that the y-axis is scaled logarithmic which
does not change the rough shape of the shown graphs but was done only due to better visualisation.

0 0.2 0.4 0.6 0.8 1
0.01

0.1

1

ratio 0.1 (b)
ratio 0.1 (h)
ratio 0.2 (b)
ratio 0.2 (h)
ratio 0.4 (b)
ratio 0.4 (h)
ratio 0.5 (b)
ratio 0.5 (h)

n/N

P(
ob

se
rv

ed
 ra

tio
 =

 re
al

 ra
tio

)

Figure 3.7: Distance between hypergeometric distribution and binomial distribution for several probabilities of
success for the case that no success was observed in the trial (k=0)

0 0.025 0.05 0.075 0.1 0.125 0.15
0.00E+00

2.50E-04

5.00E-04

7.50E-04

1.00E-03

1.25E-03

1.50E-03

1.75E-03

2.00E-03

2.25E-03

2.50E-03

2.75E-03

p = 0.5
p = 0.4
p = 0.3
p = 0.2
p = 0.1

n/N

D
is

ta
nc

e

Automatic GO Term Prediction on UniProtKB A Complementary Approach 3.3

success, the error rate of the binomial distribution has a peak at varying values of n/N. The smaller p

the greater the value n/N of the error peak and the greater the error of the binomial distribution. But

note that the maximum error in that graph is only 2.57*10-3 for p equals 0.1. The next figure (3.8)

shows the two distributions and the error rate for a probability of success of only 0.001 where the

maximum error is 6.82*10-3. Note the logarithmic scale of the y-axis. This graph is based on

numbers similar to those found in Swiss-Prot, N is 35,000 (approximately the number of proteins

containing manual GO terms in Swiss-Prot) and n is chosen to be 40 which is about the average

number of GO term occurrences. Also shown is the threshold of maximum probability to export an

exclusion rule at 1*10-10. This threshold cuts off the probability where the error rate is almost as

small as the binomial probability. Even if this means that the error of the binomial calculation is as

big as the result itself, the binomial calculation can be used for our purpose. As seen in Figure 3.8,

the binomial calculated probability is always higher than the hypergeometric calculated one (for the

case that k equals zero). In our application, the chance to export a rule about the current GO term

and taxon is increasing with lower probabilities for the case where no GO term is found in the

39

Figure 3.8: Binomial distribution, hypergeometric distribution and the distance between both for
zero successes in an example using N=35000 and M=40 (p=0.001) depending on the number of
elements drawn from the urn. The maximum error is 6.82*10-3 but the threshold for maximum
probability (1*10-10) cuts that off at an error rate very similar to the threshold. Note the
logarithmic scale on the y-axis

0 5000 10000 15000 20000 25000 30000 35000
1.00E-63
1.00E-59
1.00E-55
1.00E-51
1.00E-47
1.00E-43
1.00E-39
1.00E-35
1.00E-31
1.00E-27
1.00E-23
1.00E-19
1.00E-15
1.00E-11
1.00E-07
1.00E-03

binom
hypergeom
dist
threshold

n

P
(k

=0
)

Automatic GO Term Prediction on UniProtKB A Complementary Approach 3.3

taxons proteins. So the binomial calculation is the conservative approach and leads to fewer but

more reliable exclusions than the hypergeometric distribution. This means, however, that rules

which could have been excluded are not, in favour of generating a more reliable set of rules.

The described method provides exclusion rules for different taxonomic classifications. An

additional requirement was to ensure that only the most general applicable taxon out of the

taxonomic tree is associated with a GO exclusion. This is addressed by sorting all taxons by their

frequency in Swiss-Prot under the assumption that the most general taxon is also the most frequent

one. Then rules are built and stored in a HashMap containing a List of GO terms for each taxon (the

taxon id was chosen to be the key). During the process of rule generation, each new excluding taxon

and all its ancestors are looked up in this exclusion map and, only if none of them already excluded

the current GO term, a new rule was exported (stored in the map).

The same process is also working for InterPro groups. So exclusion rules look like “InterPro group

Y excludes GO term X”. Since InterPro groups do not have a hierarchy like taxons, the lookup

during the rule generation step is not necessary.

The exclusion rules generated are then used to provide negative GO associations for the proteins,

which are stored just like the additional positive GO terms in the ExtendedProteinData object. If for

example a rule is “prokaryote excludes nucleus” and a protein has a taxonomic classification for

prokaryotes, then nucleus is added as a negative GO annotation. A further enrichment procedure

then takes the GO hierarchy into account and adds additional negatives. This works similarly as the

positive enrichment process, only in the opposite direction. For each excluded GO term all more

specific “is-a” child terms can also be excluded.

Extending Spearmint
Due to explicit negative GO term associations, the question as to whether a GO term is annotated to

a given protein can now result in three different answers. “True” if the GO term is annotated

(originally or due to the enrichment process), “False” if it is in the negative GO annotation list and

“DontKnow” otherwise.

The Decision Tree algorithm employed by Spearmint can only handle binary results, so a filtering

step was implemented to exclude all “DontKnows”. For each currently considered GO term (target),

all proteins which returned a “DontKnow”-result for that GO term were filtered out. Thus a set of

proteins having either the GO term attached or a negative GO term association was extracted. That

set of proteins was then used to train the learning algorithm. Hence the filtering step had to be

implemented between the TargetSelectorState and the LearnerState (as seen in Figure 3.2). The

40

Automatic GO Term Prediction on UniProtKB A Complementary Approach 3.3

HasGoTermCommand, now returning a Java Integer instead of a boolean, had to be converted back

to a boolean command after this filtering step so that the rest of the pipeline could remain

unchanged.

41

Automatic GO Term Prediction on UniProtKB Results 4

4 Results

4.1 Used Measurements
To evaluate the results and compare them, four common measurements were used: accuracy,

precision, sensitivity (also called recall) and specificity. These values are all calculated on the base

of true positive (TP), false positive (FP), false negative (FN) and true negative (TN) predictions

(also see Table 2 on page 23). A definition of them is shown in the following formulas.

accuracy= TPTN
TPTNFPFN (16)

precision= TP
TPFP (17)

sensitivity=recall= TP
TPFN (18)

specificity= TN
FPTN (19)

These measures represent the quality of a machine learning algorithm, where accuracy expresses the

percentage of all correct predictions out of the sum of all predictions made. Precision means the

fraction of all positive predictions that are correct, whereas sensitivity calculates the percentage of

positive instances that were also predicted as positive, and specificity expresses the number of

negative instances correctly classified as negatives.

4.2 Comparison of the Approaches
All approaches were tested on a small dataset consisting of proteins from two InterPro groups,

Kringle proteins (IPR000001) and Connexins (IPR000500). For achieving a comparable set of

proteins and high data quality, hypothetical proteins and fragmented proteins were filtered out using

the corresponding Swiss-Prot Keywords. To achieve a better set concerning negative associations

(for those approaches not based on enriched proteins) records without any manual GO term

annotation were filtered out. Thus the size of the sample set of proteins was only 63 and ideal for

quick testing and proof of concept. For each run using the described methods, correct and false

predictions were counted.

42

Automatic GO Term Prediction on UniProtKB Comparison of the Approaches 4.2

Raw Spearmint and Simple Mapping
In order to show that the existing Spearmint algorithm is not applicable to GO term prediction, first

a comparative run of Spearmint on Keywords and then on GO terms was conducted. The result is

shown in Table 4. Also included are the results for the Simple Mapping of Keywords to GO terms

and of InterPro groups to GO terms. The figures for Spearmint originate from a five-fold Cross

Validation on raw protein data out of UniProtKB before any positive or negative enrichment took

place. It is easy to recognize the high numbers of true classifications in the Keyword run (417 true

positives and 1920 true negatives). 69 false positive predictions of Keywords influence the quality

of the classifier more than the 55 false negatives, since negative predictions, i.e. contradictions, will

not be transferred to the database in the end. The GO term classifier resulting from the same

unchanged algorithm behaves much worse in comparison. Striking is the low number of (true and

false) positive predictions and the ratio of more false positives (85) to less true positives (61).

Unfortunately the simple mapping approach didn't improve the over all number of positive

predictions. But the ratio of true positives (20 Keyword based, 21 InterPro based) to false positives

(6 Keyword based, 9 InterPro based) increased distinctly. The simple mapping also provided a

smaller number of negative associations (494 Keyword based and 594 InterPro based) but the false

negative numbers (34 and 64) stayed comparably low. Table 5 collects the values for accuracy,

43

Table 5: Comparison of accuracy, precision, sensitivity and specificity
resulting out of he Spearmint run on Keywords and GO terms as well as for the
Simple Mapping based on Keywords and InterPro groups on the small test set
before enrichment

Table 4: True Positive, False Positive, False Negative and True Negative
counts for the Spearmint run on Keywords and GO terms as well as for the
Simple Mapping based on Keywords and InterPro groups. Training set was the
63 protein sample set before enrichment.

Spearmint Simple Mapping

Keywords GO terms IPR based

TP 417 61 20 21
FP 69 85 6 9
FN 55 73 34 64
TN 1920 1069 460 530

keyword
based

Spearmint Simple Mapping

Keywords GO terms IPR based

accuracy 0.95 0.88 0.92 0.88
precision 0.86 0.42 0.77 0.70
sensitivity 0.88 0.46 0.37 0.25
specificity 0.97 0.93 0.99 0.98

keyword
based

Automatic GO Term Prediction on UniProtKB Comparison of the Approaches 4.2

precision, sensitivity and specificity resulting from those absolute counts. Using the rather small set

of proteins contained in the two filtered InterPro groups, the prediction result was, as expected, not

as significant as if the set had been larger. Nevertheless, the values achieved by pure Spearmint

were very good for Keywords (95% accuracy, 86% precision, 88% sensitivity and 97% specificity)

whereas the GO term prediction had much worse values, especially for precision (42%) and

sensitivity (46%). The simple mapping of Keywords to GO terms lead to a slight improvement over

the C4.5 Decision Tree approach on GO terms. The values of accuracy and specificity still lie above

90% but the values for precision and sensitivity differ widely. Whereas the Decision Tree for

Keywords showed 86% precision and 88% sensitivity but only 42% precision and 46% sensitivity

for GO terms, the simple mapping already shows an almost doubled precision of 77% in

comparison with the C4.5 approach, but a slightly lower sensitivity of 37%. That is what follows

from a better ratio of true positive classifications to false positive classifications and the resulting

decreased number of positive predictions in comparison to negative predictions. The mapping of

InterPro groups to GO terms shows a very similar result to the Keyword to GO mapping. An

accuracy of 88%, a precision of 70%, a sensitivity of 25% and a specificity of 98% are in general

slightly worse than those values for Keyword mapping. Note that for the Simple Mapping

algorithm, no Cross Validation was used since the algorithm itself is based on the assumption that

ALL proteins are included in the learning step. Hence a run with complete Swiss-Prot would be

necessary but could not yet be conducted due to lack of time.

Spearmint on Positive Enriched Proteins
One side product of the enrichment idea was to only positively enrich proteins with parental GO

terms. A Spearmint run with those however did not yield convincing results. Accuracy and

specificity stayed about the same as with the original proteins (87% and 93%), sensitivity increased

slightly to 45% and the precision decreased by 1% to 45%. The number of predictions and

contradictions was, as expected, much higher than before (7876 in total) but unfortunately the

number of positive classifications increased similarly in false positives (508) and true positives

(421).

Negative Enrichment of Proteins
The probabilistic approach using the binomial distribution for the negative search resulted in the

original unchanged protein data of whole Swiss-Prot in 719 exclusion rules, which could be pruned

to 122 rules due to taxonomy hierarchy. These rules covered 22 different taxonomic classifications

and 104 different GO terms. For comparison: The same calculation based on Keywords instead of

44

Automatic GO Term Prediction on UniProtKB Comparison of the Approaches 4.2

GO terms produced an overall amount of 8726 or a pruned set of 1613 rules for 340 different

taxonomy classifications which highlights the relatively small number of GO exclusion rules. This

again can be explained by lack of GO annotations in UniProt.

Resulting exclusions for GO terms are for example: “Bacteria exclude GO:0005829 (cytosol),

GO:0005783 (endoplasmic reticulum), GO:0005739 (mitochondrion), GO:0005634 (nucleus) and

GO:0005886 (plasma membrane)”. Eukaryotes exclude some GO terms which have the connotation

of bacteria. Those GO terms are marked “sensu Bacteria” for example GO:0030436 (sporulation

(sensu Bacteria)). But on the other hand, eukaryotes are also said to exclude “photosynthetic

electron transport” or “phycobilisome” which are both involved in photosynthesis and therefore

found especially in plants, although there are of course bacteria doing photosynthesis as well. Hence

although these rules are not verified by an biologist, some of them look not as reasonable as others.

To see whether the principle of negative search could be successful, those rules were nevertheless

used for testing purposes. Applied to all manually GO annotated Swiss-Prot entries, approximately

1.4 million negative GO associations were added using these plain exclusion rules. Taking the GO

hierarchy into account and enriching all proteins before the negative finder was applied, the new set

of rules contained four times more rules. 425 exclusion rules covering 328 different GO terms in 38

taxons could be extracted. Those enriched exclusion rules produced over 3.1 million negative GO

terms on Swiss-Prot. But nevertheless in both cases, filtering “DontKnows” out of the learning set

for each target lead to a very small group of remaining proteins. To avoid overprediction, only GO

terms occurring at a sufficient frequency (3 in the small test set of 63 proteins) were considered as

targets. But for all the remaining GO terms no protein having a negative association with that GO

term could be found. In this way training sets consisted only of proteins having the target GO term

annotated and contained no data to learn negative associations. A test with a greater training set of

proteins showed only slightly better results. Almost 90% of all proteins had to be filtered out for

each target. The resulting training sets for each target were still too small and therefore excluded

from the training. Thus the exclusion rules produced not a single GO term contradiction in the

Decision Tree algorithm.

45

Automatic GO Term Prediction on UniProtKB Discussion 5

5 Discussion
The results of this work demonstrate that it is challenging to predict GO terms for UniProtKB.

Spearmint had difficulties in predicting GO terms, both in the original version and with enriched

proteins. Simple Mapping also didn't show convincing improvements and the complementary

approach for negative search didn't produce true negative associations. Even though, as seen before,

there are some exclusion rules, which are perfectly reasonable. However the investigation of GO

annotations in UniProtKB provides valuable insights into the current state of the database.

The biggest problem with GO terms is the lack of annotation. There are only 33,624 entries (13% of

UniProtKB/Swiss-Prot) which have at least one GO term (excluding those inferred from electronic

annotation). Whereas entries which have at least one Keyword annotated sum up to 246,405 (98%

of UniProtKB/Swiss-Prot). Also the distribution of taxonomic classifications among the GO term

associated proteins does not reflect the distribution of Organism classifications in

UniProtKB/Swiss-Prot. For example, 34,768 (96.7%) of the GO term associated proteins are

eukaryotic proteins, whereas in UniProtKB/Swiss-Prot eukaryotes cover only approximately 43% of

all proteins. The Gene Ontology consortium was originally founded by research groups only

covering eukaryotic organisms, which is the reason that prokaryotic GO annotation started later and

is not yet as far on as annotation on eukaryotes. Bacteria are strongly underrepresented among GO

term associated proteins with only 1,086 (3%), whereas about 50% of UniProtKB/Swiss-Prot entries

are bacterial proteins. Hence since manual GO annotation in Swiss-Prot concentrates on a few

model organisms, a future approach will be to also restrict GO term prediction to those organisms.

The training set would then only consist of proteins of one specific organism at a time and would

hopefully be a better learning base for machine learning algorithms.

One problem in UniProtKB is the true negative association of GO terms. Take a look again at the

rules and their coverage of distinct GO terms (104 for the plain exclusion and 328 for the enriched

exclusion). In Swiss-Prot, approximately 8,700 distinct GO terms are currently used. This means

that for 99% of all GO terms no exclusion rule was found. Considering the exclusion rule set

extracted from enriched proteins, still only 4% of all used GO terms were covered. So even if in the

example set of proteins each entry was provided with negative associations, these negative

associations did not lead to a usable data set for machine learning. The idea of excluding certain GO

terms for taxonomic classifications though can be really helpful for future GO annotation. The

46

Automatic GO Term Prediction on UniProtKB Discussion 5

existing annotations by GOA could eventually be tested on these exclusion rules and be improved

that way. For the manual GO annotation process, the rules can also be useful to make the work

easier for curators.

The relatively poor result of Spearmint on enriched proteins is presumably mostly resulting from

those still missing real negative examples. The high number of the false positive predictions from

Spearmint don't have to be all incorrect. But since Spearmint (without the explicit negative

associations) judges non-annotated GO terms as negative examples, even though this is probably in

many cases false, such a high number of false positives can be explained. A major part of those

false positives could possibly be shifted to true positives or at least to predictions, where it is not

possible to say if they are correct or incorrect, if the dataset was more complete.

Other ideas for approaching the problem of automatic GO annotation are to use a probabilistic

approach (as Bayesian Nets) instead of a classifier. This approach would for example combine

different attributes of a protein and calculate the probability of having a GO term annotated if all

those attributes are annotated. That would have the advantage of not needing true negative

associations but the disadvantage of not being able to cross validate. This technique together with

the exclusions could also be useful for supporting future manual GO curation. Suggestions for

specific terms would make it easier for curators to chose correct terms for a protein. This approach

applied on existing GO terms only could also help to combine terms from all three domains. The

biological process and molecular function of a protein, especially, are often directly connected

(e.g.), but GO does not support these relationships between the domains. So a probabilistic

approach could extract those connections out of manual GO annotations in UniProtKB and again

propose them to curators annotating one of the GO terms involved in such a connection.

A previously mentioned drawback of Decision Trees is that they work best on a balanced training

set, where positive and negative examples have similar frequencies. In contrast, Support Vector

Machines (SVM), another machine learning algorithm, could handle the great number of outliers

and would not need as many true negatives. SVMs are also capable of separating data in more than

one dimension so not only linear separation is possible.

A potential problem of the applied approaches is that during the whole work, TrEMBL was

assumed to hold negligible information about manual GO annotation. But in fact there are about

37,000 manually GO curated proteins, a comparable absolute number to those in Swiss-Prot.

Therefore, it would double the training set and the included knowledge base to include those

proteins as well in the training set of all machine learning tools.

47

Automatic GO Term Prediction on UniProtKB Discussion 5

What transpires from the conducted database analysis, is that GO annotation in UniProtKB still

leaves a lot of room for improvement. Curators could make automatic annotation much easier, if the

GO qualifier 'NOT' would be used in a broader way for example1. Therefore this qualifier had to be

included in the UniProtKB database schema first. In this way, negative associations could be

manually curated even if this is not a trivial task of course, keeping the huge number of GO terms in

mind. The work of GOA and other curating teams turned out to be very valuable and there is still

plenty to do. Maybe the investigated approaches and other ideas could be much more successfully

applied to UniProtKB in a few years. But for now, GO data in Swiss-Prot has turned out to be more

difficult to use in automatic annotation than expected. To reach reliable predictions on GO terms

out of the existing state of the database, a closer examination of the data will be necessary.

1 NOT is actually used by curators in a very small amount of proteins. This is not transferred to UniProtKB though
and the usage takes place in a way that is not usable for machine learning. Curators use the qualifier mainly to
correct existing annotations which turned out to be false. About 200 proteins have such associations.

48

Automatic GO Term Prediction on UniProtKB Appendix 6

6 Appendix
A Example Swiss-Prot Entry
An abridged Swiss-Prot entry in flat file format as an example of a well annotated protein data

record. For a better overview headlines were added to the main paragraphs.

49

General Information about the entry
ID 128UP_DROME Reviewed; 368 AA.
AC P32234; Q9V648;
DT 01-OCT-1993, integrated into UniProtKB/Swiss-Prot.
DT 29-MAR-2005, sequence version 2.
DT 23-JAN-2007, entry version 47.
DE GTP-binding protein 128up.

Origin of the protein
GN Name=128up; Synonyms=GTP-bp; ORFNames=CG8340;
OS Drosophila melanogaster (Fruit fly).
OC Eukaryota; Metazoa; Arthropoda; Hexapoda; Insecta; Pterygota;
OC Neoptera; Endopterygota; Diptera; Brachycera; Muscomorpha;
OC Ephydroidea; Drosophilidae; Drosophila.
OX NCBI_TaxID=7227;

Literature References
RN [1]
RP NUCLEOTIDE SEQUENCE [GENOMIC DNA].
RC STRAIN=Oregon-R;
RX MEDLINE=94166747; PubMed=8121394; DOI=10.1007/BF00281788;
RA Sommer K.A., Petersen G., Bautz E.K.F.;
RT "The gene upstream of DmRP128 codes for a novel GTP-binding protein of
RT Drosophila melanogaster.";
RL Mol. Gen. Genet. 242:391-398(1994).
RN [2]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE GENOMIC DNA].
RC STRAIN=Berkeley;
RX MEDLINE=20196006; PubMed=10731132; DOI=10.1126/science.287.5461.2185;
RA Adams M.D., Celniker S.E., Holt R.A., Evans C.A., Gocayne J.D.,
RA Amanatides P.G., Scherer S.E., Li P.W., Hoskins R.A., Galle R.F.,
RA George R.A., Lewis S.E. [...]
RT "The genome sequence of Drosophila melanogaster.";
RL Science 287:2185-2195(2000).
RN [3]
RP GENOME REANNOTATION.
RX MEDLINE=22426069; PubMed=12537572;
RA Misra S., Crosby M.A., Mungall C.J., Matthews B.B., Campbell K.S.,

[...]

Comments
CC -!- FUNCTION: Deformed (Dfd) is required to activate 1.28up in
CC maxillary segment cells.
CC -!- INTERACTION:
CC Q9VGZ4:CG6325; NbExp=1; IntAct=EBI-163407, EBI-111903;
CC P25724:nos; NbExp=1; IntAct=EBI-163407, EBI-106556;
CC Q9V3H7:Sr-CI; NbExp=1; IntAct=EBI-163407, EBI-125222;
CC -!- TISSUE SPECIFICITY: Expressed in posterior-lateral epidermis of
CC the maxillary lobe.
CC -!- DEVELOPMENTAL STAGE: Expressed in embryos and adults.
CC -!- SIMILARITY: Belongs to the GTP1/OBG family.

Automatic GO Term Prediction on UniProtKB Appendix 6

50

Database cross-references
DR EMBL; X71866; CAA50701.1; -; Genomic_DNA.
DR EMBL; AE003823; AAF58591.1; -; Genomic_DNA.
DR EMBL; AY069810; AAL39955.1; -; mRNA.
DR PIR; S42582; S42582.
DR UniGene; Dm.7739; -.
DR HSSP; P20964; 1LNZ.
DR IntAct; P32234; -.
DR GermOnline; CG8340; Drosophila melanogaster.
DR Ensembl; CG8340; Drosophila melanogaster.
DR KEGG; dme:Dmel_CG8340; -.
DR FlyBase; FBgn0010339; 128up.
DR GO; GO:0005525; F:GTP binding; IDA:FlyBase.
DR GO; GO:0005515; F:protein binding; IPI:IntAct.
DR InterPro; IPR006074; GTP1-OBG_dom.
DR InterPro; IPR006073; GTP1_OBG.
DR InterPro; IPR002917; MMR_HSR1_GTP_bd.
DR InterPro; IPR005225; Small_GTP_bd.
DR InterPro; IPR004095; TGS.
DR Pfam; PF01926; MMR_HSR1; 1.
DR Pfam; PF02824; TGS; 1.
DR PRINTS; PR00326; GTP1OBG.
DR TIGRFAMs; TIGR00231; small_GTP; 1.
DR PROSITE; PS00905; GTP1_OBG; 1.

Keywords
KW Complete proteome; GTP-binding; Nucleotide-binding.

Features
FT CHAIN 1 368 GTP-binding protein 128up.
FT /FTId=PRO_0000205430.
FT NP_BIND 71 78 GTP (By similarity).
FT NP_BIND 117 121 GTP (By similarity).
FT NP_BIND 248 251 GTP (By similarity).
FT CONFLICT 2 2 S -> I (in Ref. 1).
FT CONFLICT 34 35 KL -> NV (in Ref. 1).

Sequence information
SQ SEQUENCE 368 AA; 41132 MW; 5B38B09D0C0A92F2 CRC64;
 MSTILEKISA IESEMARTQK NKATSAHLGL LKAKLAKLRR ELISPKGGGG GTGEAGFEVA
 KTGDARVGFV GFPSVGKSTL LSNLAGVYSE VAAYEFTTLT TVPGCIKYKG AKIQLLDLPG
 IIEGAKDGKG RGRQVIAVAR TCNLIFMVLD CLKPLGHKKL LEHELEGFGI RLNKKPPNIY
 YKRKDKGGIN LNSMVPQSEL DTDLVKTILS EYKIHNADIT LRYDATSDDL IDVIEGNRIY
 IPCIYLLNKI DQISIEELDV IYKIPHCVPI SAHHHWNFDD LLELMWEYLR LQRIYTKPKG
 QLPDYNSPVV LHNERTSIED FCNKLHRSIA KEFKYALVWG SSVKHQPQKV GIEHVLNDED
 VVQIVKKV
//

Automatic GO Term Prediction on UniProtKB Appendix 6

B Example TrEMBL Entry
A typical TrEMBL entry in flat file format as an example of an incompletely annotated record in

UniProtKB. For a better overview headlines were added to the main paragraphs.

51

General Information about the entry
ID Q9F0A8_PSESH Unreviewed; 175 AA.
AC Q9F0A8;
DT 01-MAR-2001, integrated into UniProtKB/TrEMBL.
DT 01-MAR-2001, sequence version 1.
DT 31-OCT-2006, entry version 20.
DE HrpD.

Origin of the protein
GN Name=hrpD;
OS Pseudomonas syringae pv. phaseolicola.
OC Bacteria; Proteobacteria; Gammaproteobacteria; Pseudomonadales;
OC Pseudomonadaceae; Pseudomonas.
OX NCBI_TaxID=319;

Literature References
RN [1]
RP NUCLEOTIDE SEQUENCE.
RC STRAIN=1302A;
RX MEDLINE=21065167; PubMed=11134504; DOI=10.1073/pnas.011265298;
RA Lee J., Kluesener B., Tsiamis G., Stevens C., Neyt C., Tampakaki A.P.,
RA Panopoulos N.J., Noeller J., Weiler E.W., Cornelis G.R.,
RA Mansfield J.W., Nuernberger T.;
RT "HrpZPsph from the plant pathogen Pseudomonas syringae pv.
RT phaseolicola binds to lipid bilayers and forms an ion-conducting
RT pore in vitro.";
RL Proc. Natl. Acad. Sci. U.S.A. 98:289-294(2001).
RN [2]
RP NUCLEOTIDE SEQUENCE.
RC STRAIN=NPS3121;
RA Gropp S.J., Guttman D.S.;
RT "The PCR amplification and characterization of entire Pseudomonas
RT syringae hrp/hrc clusters.";
RL Mol. Plant Pathol. 5:137-140(2004).

Database cross-references
DR EMBL; AF268940; AAF99295.1; -; Genomic_DNA.
DR EMBL; AY530203; AAS20454.1; -; Genomic_DNA.
DR InterPro; IPR000001; Kringle.
DR InterPro; IPR013806; Kringle-like.
DR PROSITE; PS00021; KRINGLE_1; 1.

Sequence information
SQ SEQUENCE 175 AA; 20195 MW; 07FF86135EFABB45 CRC64;
 MELIAEDHWV QWWCNPWQFA HPDWQSRFAL NCGLTLSDCD GLIASRHSVF LQSVGIEPDQ
 PPMPAEPVLR WLALTPLQRE RALDLARRIC FCRNESDGAD GQWCWALTKA LRPGVWLELA
 NEDPRLLLGA WLGPEYWSRL RLAWAPDELP DSPCEAPENK LQTLWQAILW RVTAV

Automatic GO Term Prediction on UniProtKB Appendix 6

C Symbols and Abbreviations
The alphabetic list of Abbreviations contains all used short notations out of the text and also

includes the GO evidence codes.

Symbols
event ... Negation, in this case: NOT event

P(event).. Probability of an event

P A∣B .. Conditional probability of event A under the condition of B

Abbreviations
CC...Swiss-Prot Comment

DAG..Directed Acyclic Graph

EBI..European Bioinformatics Institute

EMBL.. European Molecular Biology Laboratory

FN... False Negative

FP... False Positive

FT... Swiss-Prot Feature Table

GO.. Gene Ontology

GOA...Gene Ontology Annotation at EBI

IC ...Inferred by Curator

ID ...Identifier

IDA... Inferred from Direct Assay

IEA..Inferred from Electronic Annotation

IEP...Inferred from Expression Pattern

IGC... Inferred from Genomic Context

IGI...Inferred from Genetic Interaction

IMP.. Inferred from Mutant Phenotype

IPI.. Inferred from Physical Interaction

ISS..Inferred from Sequence or Structural Similarity

KW.. Swiss-Prot Keyword

52

Automatic GO Term Prediction on UniProtKB Appendix 6

NAS... Non-traceable Author Statement

ND..No biological Data available

NR... Not Recorded

RCA...Inferred from Reviewed Computational Analysis

SP.. Swiss-Prot

TAS...Traceable Author Statement

TN..True Negative

TP..True Positive

TR.. TrEMBL

TrEMBL... Translation of EMBL nucleotide sequence database

UniProtKB..Universal Protein Knowledge Base

53

Automatic GO Term Prediction on UniProtKB Appendix 6

D Glossary
Descriptions of some terms based on Wilsons Machine Learning Dictionary [28].

Attributes An attribute is a property of an instance that may be used to determine
its classification. For example, when classifying objects into different
types in a robotic vision task, the size and shape of an instance may be
appropriate attributes. Determining useful attributes that can be
reasonably calculated may be a difficult job - for example, what
attributes of an arbitrary chess end-game position would you use to
decide who can win the game? This particular attribute selection
problem has been solved, but with considerable effort and difficulty.
Attributes are sometimes also called features.

Binary Tree Binary Trees are a special kind of tree, in which every node has at
most 2 outgoing vertices (out-degree 2).

C4.5 C4.5 is a later version of the ID3 Decision Tree induction algorithm.

Decision Tree A Decision Tree is a tree in which each non-leaf node is labelled with
an attribute or a question of some sort, and in which the branches at
that node correspond to the possible values of the attribute, or answers
to the question. For example, if the attribute was shape, then there
would be branches below that node for the possible values of shape,
say square, round and triangular. Leaf nodes are labelled with a class.
Decision trees are used for classifying instances - one starts at the root
of the tree, and, taking appropriate branches according to the attribute
or question asked about at each branch node, one eventually comes to
a leaf node. The label on that leaf node is the class for that instance.

Directed Acyclic Graphs DAGs are graphs with no directed cycles.

Graph Technically, a (directed) graph is a set V of vertices or nodes, together
with a set E of directed edges, which are ordered pairs of vertices.
Graphs are widely used in computer science as a modelling tool. A
simple example of a graph would be V = {1, 2, 3} and E = {(1,2),
(3,1)}, which could be drawn as: 3 -----> 1 -----> 2

A directed cycle in a directed graph is a sequence of edges (v1, v2),
(v2, v3), ..., (vn, v1) such that the second vertex of the final edge is the
same as the first vertex of the first edge.

It is also possible to have undirected graphs, in which the edges are
not ordered but rather unordered pairs. Consider the possibility of
edges from a node to itself - sometimes these could be useful,
sometimes not.

Heuristic A heuristic is a fancy name for a "rule of thumb" - a rule or approach
that doesn't always work or doesn't always produce completely
optimal results, but which goes some way towards solving a
particularly difficult problem for which no optimal or perfect solution
is available.

54

Automatic GO Term Prediction on UniProtKB Appendix 6

ID3 A Decision Tree induction algorithm, developed by Quinlan. ID3
stands for "Iterative Dichotomizer (version) 3". Later versions include
C4.5 and C5. ID3 chooses a splitting criterion based on information
gain. The criterion achieving the greatest gain in information
(depending on the purity of resulting classes) will be next to split the
dataset.

Instance An instance is a term used in machine learning particularly with
symbolic learning algorithm, to describe a single training item, usually
in the form of a description of the item, along with its intended
classification.

In object oriented programming an instance of a class is a specific
(named) object. The class of Dog defines all possible dogs by listing
the characteristics that they can have; the object Lassie is one
particular dog, with particular versions of the characteristics. A Dog
has fur; Lassie has brown-and-white fur. In programmer jargon, the
object Lassie is an instance of the Dog class.

Machine Learning Machine learning is said to occur in a program that can modify some
aspect of itself, often referred to as its state, so that on a subsequent
execution with the same input, a different (hopefully better) output is
produced. See unsupervised learning and supervised learning

Node A component of a graph or tree.

Over-Fitting With large complex sets of training patterns, it is likely that some
errors may occur. In that case, and particularly in the later parts of the
learning process, it is likely that the algorithm will be trained to fit
precisely around training patterns that are actually erroneous!

Supervised Learning Supervised learning is a kind of machine learning where the learning
algorithm is provided with a set of inputs for the algorithm along with
the corresponding correct outputs, and learning involves the algorithm
comparing its current actual output with the correct or target outputs.

Tree Induction Algorithm This article describes the basic tree induction algorithm used by ID3
and successors. The basic idea is to pick an attribute A with values a1,
a2, ..., ar, split the training instances into subsets Sa1, Sa2, ..., Sar
consisting of those instances that have the corresponding attribute
value. Then if a subset has only instances in a single class, that part of
the tree stops with a leaf node labelled with the single class. If not,
then the subset is split again, recursively, using a different attribute.
This leaves the question of how to choose the best attribute to split on
at any branch node. This issue is handled in the article on splitting
criterion in ID3.

Tree Trees are a special kind of directed graph, in which there is a special
node, called the root, which has no input vertex (in-degree 0). Every
other node has exactly one input vertex (in-degree 1).

55

Automatic GO Term Prediction on UniProtKB Appendix 6

Unsupervised Learning Unsupervised learning signifies a mode of machine learning where the
system is not told the "right answer" - for example, it is not trained on
pairs consisting of an input and the desired output. Instead the system
is given the input patterns and is left to find interesting patterns,
regularities, or clusterings among them. To be contrasted to supervised
learning, as in ID3, where the system is told the desired or target
outputs to associate with each input pattern used for training.

56

Automatic GO Term Prediction on UniProtKB Appendix 6

E List of Tables
Table 1: Distribution of annotated entries in UniProtKB/Swiss-Prot and UniProtKB/TrEMBL as

absolute values and percentage of all Swiss-Prot or TrEMBL entries respectively. IEA is
short for ”Inferred from Electronic Annotation”... 8

Table 2: Classification of correct and incorrect predictions...23

Table 3: An example distribution of GO term X and Keyword Y on ten proteins.............................30

Table 4: True Positive, False Positive, False Negative and True Negative counts for the Spearmint
run on Keywords and GO terms as well as for the Simple Mapping based on Keywords
and InterPro groups. Training set was the 63 protein sample set before enrichment...... 43

Table 5: Comparison of accuracy, precision, sensitivity and specificity resulting out of he Spearmint
run on Keywords and GO terms as well as for the Simple Mapping based on Keywords
and InterPro groups on the small test set before enrichment... 43

57

Automatic GO Term Prediction on UniProtKB Appendix 6

F List of Figures
Figure 2.1: Database growth since beginning of 2004. Data out of UniProtKB release notes 1.0 to

9.7.. 6

Figure 2.2: Annotated entries in UniProtKB/Swiss-Prot and UniProtKB/TrEMBL as a percentage of
all Swiss-Prot or TrEMBL entries respectively. IEA is short for ”Inferred from
Electronic Annotation”.. 8

Figure 2.3: Average number of annotations per entry comparing Swiss-Prot and TrEMBL............... 9

Figure 2.4: Visualization of an extract out of the GO hierarchy. Note that the most common term is
at the bottom, the most specific term at the top...13

Figure 2.5: Distribution of organisms across database entries containing GO annotations in Swiss-
Prot...14

Figure 2.6: Percentages of GO annotated proteins in all entries per organism in Swiss-Prot. 13
organisms were marked ruby. Those are the organisms covering 92% of all GO
annotated Swiss-Prot entries. Dashed columns are from organisms whose genomes are
not yet fully sequenced.. 16

Figure 2.7: The 13 most important organisms for manual curated GO annotation in UniProtKB.
Each bar represents all proteins of one organism (100%) in UniProtKB. Organisms are
ordered by their absolute number of GO annotated database records in Swiss-Prot
descending from the top...17

Figure 3.1: A simple example for a dataset and one possible (not ideal) resulting Decision Tree. The
rule extracted here is: IF long hair AND painted nails THEN female.............................22

Figure 3.2: A simple sequence of states for data mining. This work flow does not include Cross-
Validation.. 26

Figure 3.3: The simplified build procedure for the GO annotation cache..28

Figure 3.4: Four simple examples for proteins functioning similarly. Each tree simplifies the GO
hierarchy. The originally annotated term is marked by a red circle. Black circles denote
parental terms which can be additionally annotated without changing the original
meaning of the annotation. Note that only “IS-A” relationships between GO terms are
considered at the moment and the multiple parent characteristic of GO is not represented
here.. 33

Figure 3.5: Representation of the GO relations in the database. The shown graph is entirely mirrored
in the table... 35

Figure 3.6: Comparison of binomial (b, dashed) and hypergeometric (h, solid) distributions for
different probabilities of success. The shown graphs represent the probabilities of
observing exactly the same ratio of success to failure as the real ratio is in dependency to
n/N. Note that the y-axis is scaled logarithmic which does not change the rough shape of
the shown graphs but was done only due to better visualisation..................................... 38

Figure 3.7: Distance between hypergeometric distribution and binomial distribution for several
probabilities of success for the case that no success was observed in the trial (k=0)......38

58

Automatic GO Term Prediction on UniProtKB Appendix 6

Figure 3.8: Binomial distribution, hypergeometric distribution and the distance between both for
zero successes in an example using N=35000 and M=40 (p=0.001) depending on the
number of elements drawn from the urn. The maximum error is 6.82*10-3 but the
threshold for maximum probability (1*10-10) cuts that off at an error rate very similar
to the threshold. Note the logarithmic scale on the y-axis...39

59

Automatic GO Term Prediction on UniProtKB References 7

7 References
1 Kretschmann E, Fleischmann W, Apweiler R: Automatic rule generation for protein

annotation with the C4.5 data mining algorithm applied on SWISS-PROT. Bioinformatics
2001, 17:920-926.

2 The UniProt Consortium: The Universal Protein Resource (UniProt). Nucleic Acids Res 2007,
35:D193-7.

3 Uniprot Website [www.ebi.uniprot.org] (visited in 01/2007)

4 Swiss-Prot Release Statistics [www.expasy.org/sprot/relnotes/relstat.html] (visited in 01/2007)

5 Trembl Release Statistics [www.ebi.ac.uk/swissprot/sptr_stats/index.html] (visited in 01/2007)

6 Wieser D, Kretschmann E, Apweiler R: Filtering erroneous protein annotation.
Bioinformatics 2004, 20 Suppl 1:I342-I347.

7 Kleen M: Sequence-based Feature Prediction on Proteins. Master thesis. University of
Applied Sciences Weihenstephan. 2006.

8 The Gene Ontology Website [www.geneontology.org] (visited in 01/2007)

9 Apweiler R, Attwood TK, Bairoch A et al.: InterPro--an integrated documentation resource
for protein families, domains and functional sites. Bioinformatics 2000, 16:1145-1150.

10 Camon E, Magrane M, Barrell D et al.: The Gene Ontology Annotation (GOA) project:
implementation of GO in SWISS-PROT, TrEMBL, and InterPro. Genome Res 2003,
13:662-672.

11 Zehetner G: OntoBlast function: From sequence similarities directly to potential functional
annotations by ontology terms. Nucleic Acids Res 2003, 31:3799-3803.

12 Hennig S, Groth D, Lehrach H: Automated Gene Ontology annotation for anonymous
sequence data. Nucleic Acids Res 2003, 31:3712-3715.

13 Vinayagam A, Koenig R, Moormann J et al.: Applying Support Vector Machines for Gene
Ontology based gene function prediction. BMC Bioinformatics 2004, 5:116.

14 Hvidsten TR, Komorowski J, Sandvik AK et al.: Predicting gene function from gene
expressions and ontologies. Pac Symp Biocomput 2001, :299-310.

15 Barutcuoglu Z, Schapire RE, Troyanskaya OG: Hierarchical multi-label prediction of gene
function. Bioinformatics 2006, 22:830-836.

16 King OD, Foulger RE, Dwight SS et al.: Predicting gene function from patterns of
annotation. Genome Res 2003, 13:896-904.

17 Gruber TR: Toward principles for the design of ontologies used for knowledge sharing. Int.
J. Hum.-Comput. Stud 1995, 43:907-928.

60

Automatic GO Term Prediction on UniProtKB References 7

18 The Gene Ontology Consortium: Creating the gene ontology resource: design and
implementation. Genome Res 2001, 11:1425-1433.

19 Amigo! A Gene Ontology Browser [www.godatabase.org] (visited in 02/2007)

20 Batista CVF, del Pozo L, Zamudio FZ et al.: Proteomics of the venom from the Amazonian
scorpion Tityus cambridgei and the role of prolines on mass spectrometry analysis of
toxins. J Chromatogr B Analyt Technol Biomed Life Sci 2004, 803:55-66.

21 Cherry JM, Adler C, Ball C et al.: SGD: Saccharomyces Genome Database.. Nucleic Acids Res
1998, 26:73-79.

22 Quinlan J: Induction of decision trees. Machine Learning 1986, 1:81-106.

23 Quinlan JR: C4.5 Programs for machine learning. The Morgan Kaufmann Series in Machine
Learning; 1993.

24 Witten IH, Frank E: Data Mining, Practical Machine Learning Tools and Techniques with
Java Implementations. MorganKaufmann Publishers; 2000.

25 Mulder NJ, Apweiler R, Attwood TK et al.: New developments in the InterPro database.
Nucleic Acids Res 2007, 35:D224-8.

26 Gamma E, Helm R, Johnson R et al.: Design Patterns Elements of Reusable Object-Oriented
Software. Addison-Wesley Longman Publishing Co., Inc.; 1995.

27 Binomial Distribution In Wikipedia [http://en.wikipedia.org/wiki/Binomial_distribution]
(visited in 12/2006)

28 The Machine Learning Dictionary [www.cse.unsw.edu.au/~billw/mldict.html] (visited in
03/2007)

61

	1Summary
	2Introduction
	2.1Background
	2.2Prior Work
	2.3What is GO?
	2.4GO Annotations in UniProtKB
	2.5Aims of this Work
	2.6Difficulties

	3Methods
	3.1Spearmint on GO terms
	C4.5 Decision Tree
	Spearmint Pipeline
	GO Integration

	3.2Simple Mapping
	3.3A Complementary Approach
	Positive Enrichment
	Negative Enrichment
	Extending Spearmint

	4Results
	4.1Used Measurements
	4.2Comparison of the Approaches
	Raw Spearmint and Simple Mapping
	Spearmint on Positive Enriched Proteins
	Negative Enrichment of Proteins

	5Discussion
	6Appendix
	Symbols
	Abbreviations

	7References

