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Estimating Mutation Distances from Unaligned Genomes
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ABSTRACT

Alignment-free distance measures are generally less accurate but more efficient than tra-
ditional alignment-based metrics. In the context of genome sequence analysis, the efficiency
gain is often so substantial that it outweights the loss in accuracy. However, a further
disadvantage of alignment-free distances is that their relationship to evolutionary events
such as substitutions is generally unknown. We have therefore derived an estimator of the
number of substitutions per site between two unaligned DNA sequences, Kr. Simulations
show that this estimator works well with ‘‘ideal’’ data. We compare Kr to two alternative
alignment-free distances: a k-tuple distance and a measure of relative entropy based on
average common substring length. All three measures are applied to 27 primate mitochon-
drial genomes, eight whole genomes of Streptococcus agalactiae strains, and 12 whole ge-
nomes of Drosophila species. In each case, the cluster diagrams based on Kr are equivalent to
or significantly better than those based on the two alternative measures. This is due to the
fact that in contrast to the alternative measures Kr is derived from an explicit model of
evolution. The computation of Kr is efficiently implemented in the program kr, which can be
downloaded freely from the internet.

Key words: alignment-free distance, number of substitutions, genome comparison, suffix tree,
shortest unique substring.

1. INTRODUCTION

‘‘The affinities of all the beings of the same class have sometimes been represented by a great
tree. I believe this simile largely speaks the truth.’’ This quote from the Origin of Species indicates

that Darwin was not the first to imagine descent as a branching tree when he drew the famous single figure for
his book (Darwin, 1859). Indeed, the tree metaphor had been used by a number of prominent biologists
before, including Lamarck (Archibald, 2008). Rather than priority, what is remarkable here is Darwin’s
clarification that a phylogeny represents ‘‘affinities between all the beings of the same class.’’ The com-
plement of ‘‘affinities’’ are distances.

Distances between organisms are traditionally defined with respect to homologous traits. Since the
advent of molecular biology, the traits most widely used for phylogeny reconstruction have been protein
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and nucleotide residues. Homologous residues are identified by sequence alignment, and the corresponding
algorithms have been developed and refined since the early 1970s (Waterman, 1995).

Today, alignment algorithms can be applied to complete genome sequences from diverse organisms
yielding a wealth of evolutionary insights. However, more complex organisms tend to have larger genomes.
Kauffman observed that organismal complexity as quantified by the number of cell types generally only
grows as the square root of the amount of DNA per cell (Kauffman, 1993). This leads to the well-known
large genomes of organisms with many cell types such as mammals.

Alignment of very long sequences is computationally challenging (Dewey and Pachter, 2006). For-
tunately, an alignment is not necessary for computing distances between sequences, and alignment-free
sequence comparison has been developed since the 1980s (Blaisdell, 1986). These methods fall in two
classes: approaches based on fixed-length words and resolution-free methods (Vinga and Almeida, 2003).
The latter class is rather heterogeneous, and includes information theoretical measures, such as relative
entropy (Ulitsky et al., 2006).

In-between full alignment on the one hand an alignment-free methods on the other are metrics based on
homology at a higher level than individual residues. These include distances computed from the number of
inversions (Adam and Sankoff, 2008), gene content (Huson and Steel, 2004), or coverage by BLAST hits
(Henz et al., 2005).

A good distance measure should be linear with evolutionary time. Since evolutionary time can usually
not be observed directly, it is inferred from the number of certain kinds of events that have occurred since
divergence. Such events might be genome rearrangements (Adam and Sankoff, 2008), insertions=deletions
(Lunter et al., 2006), or nucleotide substitutions ( Jukes and Cantor, 1969). The latter is most widely used
because it can easily be computed from an alignment and is to a first approximation linear in time
(Zuckerkandl and Pauling, 1965).

The advantage of alignment-free distance measures is their efficient computation compared to the
construction of alignments to infer substitution rates. Their disadvantage is, however, that their growth is
monotone, but not necessarily linear in time. This is the reason why these measures are usually only used to
reconstruct the topology of phylogenies and not their branch lengths.

Our aim in this study is to derive an alignment-free distance measure that allows branch-length re-
construction in addition to topology reconstruction. Specifically, we propose a method to estimate the
number of substitutions per site from unaligned genomes. We develop this distance measure on the
background of our previous work on the repeat structure of DNA sequences using the concept of shortest
unique substrings, which we call shustrings. These constitute the shortest unique prefixes of each suffix in a
sequence (Haubold et al., 2005). Based on shustrings, we have previously defined a measure of genome
repetitiveness, the index of repetitiveness, which is closely related to the information theoretical relative
entropy (Haubold and Wiehe, 2006). A similar quantity has been used as a distance measure for DNA and
protein sequences (Ulitsky et al., 2006). However, we will show that, without an explicit model of how a
given distance measure changes over time, its utility is reduced.

In the following, we derive our repeat-based estimator of the number of substitutions per site, Kr. We
explore by simulation the domain of Kr before applying it to three data sets: 27 primate mitochondrial
genomes, the complete genomes of eight strains of Streptococcus agalactiae (Tettelin et al., 2005), and the
complete genomes of 12 Drosophila species (Drosophila 12 Genomes Consortium, 2007). We compare the
results based on Kr to two alternative distance metrics representing the two major classes of alignment-free
distance measures: a k-tuple distance measure recently shown to be useful in the reconstruction of trees
from highly divergent sequences (Yang and Zhang, 2008), and a measure of relative entropy (Cover and
Thomas, 2006) based on average common substring lengths (Ulitsky et al., 2006). In each case, Kr gives
biologically meaningful results that are either equivalent or substantially better than the next best alter-
native.

2. APPROACH AND DATA

2.1. Derivation of Kr

Kr measures the distance between pairs of double-stranded DNA sequences. Let Q and S be such a pair of
sequences, which we call query and subject, respectively. For every suffix of Q, Q[i..jQj], we determine the
shortest prefix that is absent from S and call these shortest prefixes shortest unique substrings, or shustrings
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(Haubold et al., 2005, 2008; Haubold and Wiehe, 2006). We wish to know the expected shustring length as
a function of the number of substitutions that separate Q and S since they diverged from their last common
ancestor. We start deriving this relationship by establishing the probability density function of shustring
lengths for unrelated query and subject before generalizing this to related pairs of sequences.

For 1! i! jQj and 1! i0 ! jSj, let

Xi, i0 :¼ minfk : Q[i::iþ k$ 1] 6¼ S[i0::i0 þ k$ 1]g

and

X%
i :¼ max

1!i0!jSj
Xi, i0 :

In other words, X%
i refers to the length of the shustring starting at position i in Q. Moreover, we set Ki,x,&

as the number of nucleotides & in the substring Q[i..iþ x$ 1], &¼A,C,G,T, and summarize

Ki, x :¼ (Ki, x,A,Ki, x,C,Ki, x,G,Ki, x,T ):

Let the frequencies of the nucleotides found in Q and S be denoted by

p :¼ (pA, pC, pG, pT ) and q :¼ (qA, qC, qG, qT ), (1)

respectively. Assuming that Q and S are strings arising by independent draws from p and q, we find

P(fXi, i0 ! xgjQ[i::iþ x$ 1])¼ 1$
Yiþ x$ 1

j¼ i

qQ[j] ¼ 1$ qK i, x : (2)

Here, we have ignored edge effects for i close to jQj or i0 close to jSj, which is equivalent to assuming that

both sequences are long. By writing
!
x
k

"
:¼

!
x

kA...kT

"
, we can summarize the probability of observing a

particular nucleotide composition in a shustring as

PfKi, x ¼ kg¼ x
k

# $
PfQ[i::iþ x$ 1]g¼ x

k

# $
pk:

Next we make the approximation that Xi, 1, . . . ,Xi, jSj are independent, i.e., shustrings do not overlap. While
this is clearly not true, we shall see that this assumption is justified for long sequences. In that case we
obtain, using conditional expectations,

PfX%
i ! xg¼ E[P(fX%

i ! xgjKi, x)]¼ E

%
1$ qKi, x

& 'jSj
(
¼
X

k

x
k

# $
pk 1$ qk
& 'jSj

: (3)

Since we are dealing with double stranded DNA, we can make the simplifications qG¼ qC, qA¼ qT,
pG¼ pC, pA¼ pT and define the GC-content of Q as 2p¼ pGþ pC and that of S as 2q¼ qCþ qG. Then the
desired probability density function of shustring lengths for unrelated query=subject can be expressed as

PfX%
i ! xg¼

X

k

x

k

# $
pk 1$ qk
& 'jSj

¼
X

k

kG þ kC

kG

# $
kA þ kT

kA

# $
x

kG þ kC

# $
pkG þ kC

1

2
$ p

# $kA þ kT

1$ qkG þ kC
1

2
$ q

# $kA þ kT
 !jSj

¼
Xx

k¼ 0

2x
x

k

# $
pk

1

2
$ p

# $x$ k

1$ qk
1

2
$ q

# $x$ k
 !jSj

: (4)

This generalizes the corresponding probability density function for a single sequence derived as equation
(1) by Haubold et al. (2005).

Next we consider pairs of related sequences that evolve under a one-parameter mutation model where
every nucleotide changes into every other nucleotide with equal rate. This mutation model is also known as
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the Jukes-Cantor model ( Jukes and Cantor, 1969). Assume for simplicity that query and subject have
identical nucleotide composition, p¼ q. Let d0 denote the number of uniformly distributed segregating sites
that have accumulated since the divergence of query and subject. The probability that a particular query
substring of length x, Q[i..iþ x$ 1] has an exact match S[i..iþ x$ 1] at the homologous position in the
subject is (1$ d0=jSj)x. Note that Xi,i is the length of the homologous exact matches. Since Xi,i' jSj, we can
write

PfXi, i 4 xg¼ 1$ d0

jSj

# $x

( e$ xd0=jSj: (5)

This means that Xi,i is approximately exponentially distributed with parameter d :¼ d 0=jSj and hence has an
expectation of 1=d. Note that in this case Xi,i is independent of Q[i..jQj]. Hence, with a similar calculation as
for the unrelated case, we find that

PfX%
i ! xg¼PfXi, i ! xg ) E P max

i0 6¼i
Xi, i0 ! x

) *
jKi, x

# $% (

( (1$ e$ xd) )
Xx

k¼ 0

2x
x

k

# $
pk

1

2
$ p

# $x$ k

1$ pk
1

2
$ p

# $x$ k
 !jSj

,

(6)

where the sum is again over all k¼ (kA, kC, kG, kT ) with kA þ ) ) ) þ kT ¼ x and 2p is the GC-content of both
sequences, as above. Note that, for known values of p and jSj, the distance d is the only parameter on the
right hand side of (6). We can therefore express the expectation of the average shustring length,

‘Q, S :¼
1

jQj
XjQj

i¼ 1

X%
i , i:e: E[‘Q, S]¼

XjSj

x¼ 1

x(PfX%
i ! xg$PfX%

i ! x$ 1g), (7)

as a function of d. Thus, equation (7) establishes the sought relationship between divergence, d, and the
(expected) shustring length under this divergence. Using a moment-based approach, substituting the av-
erage shustring length for its expectation, we can now compute the divergence given an observed average
shustring length. In a final step such a divergence value is converted to our new mutation distance using the
Jukes-Cantor equation ( Jukes and Cantor, 1969):

Kr ¼ $ 3

4
ln 1$ 4

3
d

# $
:

2.2. Asymmetric values of Kr

The average shustring length varies, depending on which of a pair of sequences we label query and
subject. This translates to asymmetric Kr values, which is of course unacceptable in a metric. There are two
main sources of asymmetric average shustring lengths: (i) local homology and (ii) copy number variation in
shared elements (Fig. 1). If homology is only local, shustring lengths from non-homologous regions
indicated as dotted lines will deflate the average shustrings length (Fig. 1A). This problem is mitigated by
using equation (4) to exclude shustring lengths from the analysis that would be observed by chance alone.

A greater number of a shared repeat element in the query than in the subject leads to an increase in
average shustring length compared to the converse case (Fig. 1B). Segmental duplication is a single event

A B

FIG. 1. Sources of asymmetry in the average shustring length, ‘(Q, S). (A) Sequences S1 and S2 differ in length and as
a result share only local homology (—), in which case ‘ (S1, S2)>‘ (S2, S1). (B) S1 contains a lower copy number of a
particular genetic element (box) than S2, in which case ‘ (S1, S2)<‘ (S2, S1).
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in evolution, while a potentially large number of mutations is necessary to reverse its effect on the average
shustring length. We therefore decided to use the smaller of the two values leading to a greater divergence.

2.3. Implementation

At the heart of the computation of our distance measure lies the calculation of the average shustring
length. This is done by indexing query and subject in a generalized suffix tree to look up individual
shustring lengths. We used a suffix array (Manzini and Ferragina, 2002) to simulate suffix tree traversal
(Abouelhoda et al., 2002). Details of the corresponding algorithm are given in Haubold et al. (2008). The
resulting program, kr, can be accessed via a web interface at http:==guanine.evolbio.mpg.de=kr=. The site
allows submission of a file containing the sequences to be compared in any format and returns the Kr-based
phylogeny. In addition, the C source code of kr is freely available from this web site under the GNU
General Public License.

2.4. Alternative distance measures

We implemented two alternative alignment-free distance measures to compare Kr to: the k-tuple distance
(Yang and Zhang, 2008) and the average common substring distance (Ulitsky et al., 2006). The k-tuple
distance is defined as

dktup(Q, S)¼
X4k

i¼ 1

(Qi $ Si)
2,

where Qi is the frequency of the i-th tuple of length k in Q, and Si is the frequency of the i-th tuple of length
k in S. Following Yang and Zhang (2008), we used tuples of length k ¼ 5.

The average common substring length, as defined by Ulitsky et al. (2006), is identical to the average
common shustring length defined above minus one. Given the average common substring length, L(Q, S),
the corresponding distance is defined as the average between the two versions of

dacs(Q, S)¼ log (jSj)=L(Q, S)$ 2 log (jQj)=jQj:

2.5. Cluster analysis

Square matrices of the three distances investigated—Kr, dacs, and dktup—were subjected to cluster
analysis using the bionj algorithm as implemented in the program bionj (Gascuel, 1997). The resulting trees
were either midpoint rooted or outgroup rooted using retree, which is part of the PHYLIP package
(Felsenstein, 2005). Trees were compared using the Symmetric Distance (Robinson and Foulds, 1981) and
the Branch Score Distance (Kuhner and Felsenstein, 1994) as implemented in the PHYLIP program treedist
(Felsenstein, 2005). Another PHYLIP program, drawgram, was used to draw the cluster diagrams.

Bootstrapping of phylogenies was carried out using the block bootstrap approach with a block size of
500 bp. Consensus trees were constructed from the bootstrapped trees using the PHYLIP program consense.

2.6. Data sets

Three data sets representing the range of input sizes typically encountered in phylogenomic studies were
analyzed: 27 primate mitochondrial genomes (446.23 kb total), complete genomes of eight strains of the
bacterial pathogen Streptococcus agalactiae (17.39Mb), and complete genomes of 12 Drosophila species
(2.03Gb).

The primate mitochondrial genomes were downloaded from GenBank and analyzed without further
editing (Table 1).

The S. agalactiae strains, which had previously been analyzed by Tettelin et al. (2005), were downloaded
from GenBank (Table 2). All contig sequences of a single strain were concatenated before analysis.
Multilocus sequence data for the sequence types corresponding to these strains was obtained from the
database mlst.net (Aanensen and Spratt, 2005).

The Drosophila dozen genomes consisting of up to 14,547 contigs were downloaded from
http:==rana.lbl.gov=drosophila=caf1=all_caf1.tar.gz. Unsequenced regions marked by Ns were removed as
they would inflate the average shustring length. In addition, the chromosome or contig sequences of each
species were concatenated before analysis.
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3. RESULTS

3.1. Simulation study

We simulated pairs of sequences with a known number of substitutions per site, K. The pairwise distances
dktup, dacs, and Kr were then computed and compared to K. Figure 2A shows that, for 0!K! 0.55, the value
of dktup remains close to zero throughout. In contrast, dacs grows rapidly with low values of K and then
levels off. Kr, finally, approximates moderate values of K very well. For greater evolutionary distances, the
expectation of Kr continues to grow with K, but the error bars also grow substantially and the estimated
values are not centered on the true values any more (Fig. 2B). This ‘‘phase transition’’ in the behavior of Kr

Table 1. Primate Mitochondrial Genomes Analyzed in This Study

No. Name Genbank common name Accession

1 Cebus albifrons White-fronted capuchin NC_002763.1
2 Chlorocebus aethiops African green monkey NC_007009.1
3 Chlorocebus pygerythrus Green monkey NC_009747.1
4 Chlorocebus sabaeus Green monkey NC_008066.1
5 Chlorocebus tantalus Green monkey NC_009748.1
6 Colobus guereza Guereza NC_006901.1
7 Cynocephalus variegatus Sunda flying lemur NC_004031.1
8 Gorilla gorilla Western Gorilla NC_001645.1
9 Homo sapiens Human NC_001807.4
10 Hylobates lar Common gibbon NC_002082.1
11 Lemur catta Ring-tailed lemur NC_004025.1
12 Macaca mulatta Rhesus monkey NC_005943.1
13 Macaca sylvanus Barbary ape NC_002764.1
14 Nasalis larvatus Proboscis monkey NC_008216.1
15 Nycticebus coucang Slow loris NC_002765.1
16 Pan paniscus Pygmy chimpanzee NC_001644.1
17 Pan troglodytes Chimpanzee NC_001643.1
18 Papio hamadryas Hamadryas baboon NC_001992.1
19 Pongo pygmaeus Bornean orangutan NC_001646.1
20 Pongo pygmaeus abelii Sumatran orangutan NC_002083.1
21 Presbytis melalophos Mitred leaf monkey NC_008217.1
22 Procolobus badius Western red colobus NC_008219.1
23 Pygathrix nemaeus Douc langur NC_008220.1
24 Pygathrix roxellana Golden snub-nosed monkey NC_008218.1
25 Semnopithecus entellus Hanuman langur NC_008215.1
26 Tarsius bancanus Horsfield’s tarsier NC_002811.1
27 Trachypithecus obscurus Dusky leaf monkey NC_006900.1

Table 2. Streptococcus agalactiae Genomes and the Corresponding Multilocus
Sequence Types Analyzed in This Study

No. Strain Accession Sequence type

1 18RS21 AAJO01000000 ST19
2 2603V=R AAJP01000000 ST110
3 515 AAJQ01000000 ST23
4 NEM316 AAJR01000000 ST23
5 A909 AAJS01000000 ST7
6 CJB111 CP000114 ST1
7 COH1 AE009948 ST17
8 H36B AL732656 ST6
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as a function of K is due to the fact that for large values of K the slope of the average shustring length
rapidly approaches zero (Fig. 3).

3.2. Clustering primate mitochondrial genomes

Figure 4 compares the cluster diagrams of primate mitochondrial genomes based on dktup (A), dacs (B), Kr

(C), and alignment (D). The dktup tree is quite rough and contains numerous unresolved nodes. Much more
resolution is obtained when using dacs. For instance, the ape clade marked by an asterisk (*, Fig. 4B) has the
well-known correct topology. In contrast, Papio hamadyras in the clade marked by a bullet (&) ought to

A B

FIG. 2. Pairwise distances as a function of the number of substitutions per site, K. (A) Range of substitutions=site (K)
values that are well approximated by Kr. (B) Range of K values with ‘‘phase transition’’ of Kr. Each symbol represents
the mean* standard deviation of 104 iterations with sequence pairs of length 100 kb each and GC content of 0.5.

FIG. 3. Average shustring length (‘Q,S) as a function of the number of substitutions per site, K (sequence length,
100 kb; GC content, 0.5).
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cluster with the macaques rather than with the green monkeys (Chlorocebus). Kr resolves both of these
clades correctly (Fig. 4C). However, the Colobinae ({) remain clustered incorrectly by all three alignment-
free distance measures.

Figure 4B,C also displays bootstrap values of 75% or higher. All nodes in the corresponding alignment-
based tree had bootstrap values of 95% or higher (Fig. 4D). The lower self-consistency of our method
compared to an alignment-based approach is due to the relatively small amount of sequence data provided
by mitochondrial genomes ((16.5 kb). We will return to this issue when analyzing the roughly 100 times
longer genomes of S. agalactiae below.

A B

C D

FIG. 4. Midpoint-rooted neighbor joining trees of 27 primate mitochondrial genomes. (A) Based on dktup. (B) Based
on dacs, bootstrap values +75% shown. (C) Based on Kr, bootstrap values +75% shown. (D) Alignment-based tree,
bootstrap support for all nodes +95%. *, ape clade (Hominoidea); &, Cercopithecinae among the Old World monkeys
(Cercopithecidae), {, Colobinae.
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Bootstrap support quantifies the consistency of different parts of the input data with respect to the applied
tree reconstruction method (Felsenstein, 1985). It says little about the precision of this method. In order to
quantify the precision of the cluster diagrams displayed in Figure 4, we computed the three Branch Score
Distances (Kuhner and Felsenstein, 1994) between the alignment-free trees on the one hand (Fig. 4A–C)
and the alignment-based tree on the other (Fig. 4D). The distances were ranked as follows

Kr(0:07)5 dacs(0:39)5 dktup(1:54):

In other words, the alignment-based tree is most closely approximated by the Kr tree. If we measure the
distance between the trees in terms of topology only (Symmetric Distance [Robinson and Foulds, 1981]),
we get the same ranking of distances to the alignment tree:

Kr(8)5 dacs(10)5 dktup(28):

3.3. Clustering Streptococcus agalactiae genomes

Streptococcus agalactiae causes sepsis in neonates and as a result is an intensely studied group of gram-
positive bacteria. Tettelin and colleagues reconstructed the phylogeny of eight strains of S. agalactiae from
the complete genome sequences using gene content as their distance metric (Tettelin et al., 2005). We
reproduce the resulting tree in Figure 5A. The authors were surprised to find that this phylogeny did not
cluster strains 515 and NEM316, even though they are members of the same multilocus sequence type.
Figure 5B displays a tree based on the available multilocus sequence typing (MLST) data showing the
identity of strains 515 and NEM316. This agreed with the trees based on dacs and Kr, which both clustered
NEM316 and 515 (Fig. 5C,D). Cluster analysis of S. agalactiae based on dktup failed, because all branches
of the resulting tree had length zero.

The S. agalactiae trees in Figure 5C,D have identical topologies and very similar relative branch lengths.
The topological distances of the gene content tree (Fig. 5A) and the Kr=dacs trees (Fig. 5C,D) on the one
hand and the MLST tree on the other (Fig. 5B) are summarized as

Kr(6)¼ dacs(6)5 gene content(10):

The bootstrap support for all nodes on the Kr and the dacs tree was 100%. Compare this to the lower
bootstrap support for the primate trees in Figure 4B,C, which were based on roughly 1% of the genome
length of S. agalactiae.

3.4. Clustering Drosophila genomes

The accepted phylogeny of the twelve sequenced Drosophila species is shown for reference in Figure 6A
(Drosophila 12 Genomes Consortium, 2007). The tree based on the dktup metric when applied to the
complete genomes differs markedly from this; for example, D. sechellia is not shown as the closest
neighbor of D. simulans, as would be expected (Fig. 6B). In contrast, the tree based on dacs does cluster
these two species and is on the whole much closer to the accepted phylogeny. Some differences remain,
though; for example, D. ananassae ought to be part of the melanogaster group. The cluster diagram based

DCBA
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515 (23)
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CHB111 (1)

A909 (7)

18RS21 (19)
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COH1 (17)

515 (23)

NEM316 (23)

H36B (6)

CHB111 (1)

A909 (7)

18RS21 (19)

2603V/R (110)

FIG. 5. Midpoint-rooted neighbor joining trees of eight strains of Streptococcus agalactiae; strain designations are fol-
lowed bymultilocus sequence types in brackets. (A) Gene content tree redrawn fromTettelin et al. (2005). (B) Tree based on
alignedMLSTdata. (C) Tree based on dacs applied to complete genomes. (D) Tree based onKr applied to complete genomes.
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FIG. 6. Outgroup-rooted neighbor-joining trees of 12 Drosophila species computed from complete genome se-
quences. (A) Accepted phylogeny (Drosophila 12 Genomes Consortium, 2007). (B) Based on dktup. (C) Based on dacs.
(D) Based on Kr.
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on Kr, finally, is topologically identical to the accepted phylogeny (Fig. 6D). The topological distances
between the accepted phylogeny on the one hand (Fig. 6A) and the alignment-free reconstructions on the
other (Fig. 6B–D) are ranked as

Kr(0)5 dacs(6)5 dktup(14):

4. DISCUSSION

Phylogenies are the central metaphor of evolutionary biology (Archibald, 2008). Any particular phy-
logeny implies distances between the taxa investigated. Since the advent of molecular biology, taxa are
increasingly represented by a sample of their genome sequence, and the computation of distances between
molecular sequences has attracted a correspondingly large amount of research interest over the years
(Yang, 2006).

Alignment-free distances have for some time now complemented the more widely used alignment-based
measures, but it is the current availability of genome-scale sequence data that has sparked renewed interest
in alignment-free distances (Vinga and Almeida, 2003). Any such measure needs to fulfil two necessary
conditions for usefulness: biological relevance and efficient implementation.

Biological relevance is ensured by explicitly stating the connection between the metric and some known
measure of evolutionary distance. We constructed Kr as an estimator of the expected number of substi-
tutions per site, K, by deriving the probability density function of shustring lengths as a function of the
number of mismatches per site, d. The resulting equation (7) can be used to compute the expected average
shustring length. By equating an observed average shustring length with its expectation, we can solve
numerically for d. The relationship between d and the number of substitutions, finally, is given by the oldest
distance measure for DNA sequence data, the Jukes-Cantor equation.

The Jukes-Cantor equation has been refined in various ways since its inception, particularly by taking
into account nucleotide-specific mutation rates and rate variation between sites (Yang, 2006). In principle,
it might be possible to re-derive equation (7) for more complex mutation models. However, Figure 2 shows
that at least for the simplest of evolutionary models Kr approaches the number of substitutions per site much
better than the other two measures investigated.

The distance measures we compared Kr to are representative of two great classes of alignment-free
distance measures: those based on word frequencies (dktup) and those based on the information-theoretical
concept of relative entropy (dacs). k-Tuple distances are easy to compute and are used in various contexts
including phylogeny reconstruction in bacteria (Pride et al., 2003), guide tree reconstruction for multiple
sequence alignment (Larkin et al., 2007), and phylogeny reconstruction for highly divergent sequences
(Yang and Zhang, 2008). However, for the small to moderate evolutionary distances considered in this
study, they turned out to be less useful (Figs. 4A and 6B).

The average common substring length is very similar to the average shustring length on which Kr is
based. Both measures are therefore restricted to closely related DNA sequences as they saturate with
evolutionary distance (Fig. 2B). The comparison between Kr and dacs demonstrated the importance of
expressing a quantity such as the average common substring length as a function of specific evolutionary
events: for primate mitochondrial DNA and for Drosophila genomes Kr outperformed dacs (Figs. 4 and 6).
However, when applied to the genomes of S. agalactiae, both methods obtained the same topology (Fig.
5B,C). This is an instructive case, as the S. agalactiae strains were the most closely related of the taxa
analyzed. In fact, they were so closely related that dktup failed to resolve any phylogeny at all. In contrast,
both dacs and Kr returned distances whose topology agreed better with the multilocus sequence data than a
published analysis based on gene presence=absence (Tettelin et al., 2005).

Alignment-free distance measures generally trade speed for precision. This is the reason why, for
instance, a k-tuple distance is used in clustalw for fast guide tree construction (Larkin et al., 2007). Guide
tree construction in ‘‘quicktree’’ mode of clustalw is fast indeed, taking only 0.5 s on a 3-GHz Intel Xeon
system to compute a tree of the 27 primate mitochondrial genomes. This is orders of magnitudes faster than
the default guide tree construction mode based on all pairwise alignments. However, the quality of the
resulting tree is approximately as low as that of our dktup tree shown in Figure 4A. Given that the quality of
the Kr tree (Fig. 4C) is much better than that, Kr might be useful as a fast guide tree construction method.
This brings us to the question, how fast is Kr compared to other distance measures?
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Word-frequency measures have very fast run times that are linear in the combined lengths of the input
sequences, O(l). In addition, they only need to store the word frequency table, so their memory requirement
is O(4k). In contrast, the run times of both dacs and Kr are dominated by suffix array construction. For the
algorithm underlying the suffix array implementation used by us (Manzini and Ferragina, 2002), this would
be O(c,l log l), where c depends on the time it takes to compare two suffixes. When sorting identical
suffixes, this time can become large so that the worst case run time is O(l2 log l), but in most applications it
is much closer to O(l log l). In addition to computing a suffix array, Kr also requires the estimation of d
from equation (7), which makes it somewhat slower than dacs. Here are a few example run times: On a
3GHz Intel Xeon system it took 0.15 s to compute dktup for the 27 primate mitochondrial genomes, 8.99 s to
compute dacs, and 10.83 s to compute Kr. In other words, our implementation of dktup is over 70 times faster
than our implementation of Kr. While this may make our distance measure seem slow, it is still fast
compared to the computation of the corresponding multiple sequence alignment which takes 8977 s using
muscle (Edgar, 2004) and 8657 s using clustalw (Larkin et al., 2007). These programs are designed for
protein sequence alignment. In contrast, MAVID is a program designed for aligning multiple long se-
quences (Bray and Pachter, 2004) and it analyzes the primate data in 16.94 s, which is close to the run time
of our more approximate Kr measure.

As expected from the complexity formulas, the run time difference increased between dktup on the one
hand and dacs=Kr on the other when applied to the Drosophila data. On our test system dktup was computed
in 6min and 43 s, while the computation of dacs took roughly 403 times as long and the computation of Kr

481 times as long amounting to 2 d, 5 h, 45min, and 46 s. We tried to align the Drosophila data using
MAVID, but ran out of memory on a 64GB computer. Moreover, given that the Drosophila data consists of
unordered contigs, it is not clear how a global multiple sequence alignment as computed by MAVID might
even sensibly be defined.

Notice that the difference in run time between dacs and Kr is appreciable. This would make it desirable to
approximate the sum in equation (6) by a probability density function. Still, it is remarkable that 2 days
suffice to analyze the full genomes of the Drosophila dozen and return with the accepted branching order.
In their current form the run times of the measures investigated can be summarized as

dktup ' dacs 5Kr:

It is important to realize that the run time of Kr depends on details of how shustrings are looked up and
how equation (7) is solved. These might be revised in the future, particularly since efficient algorithms for
the construction of suffix arrays are a lively topic of current research (Puglisi et al., 2007). However, this
does not materially affect the central contribution of our study, which is to construct an alignment-free
estimator of the number of pairwise substitutions. This estimator is not only applicable to unaligned
genomes but also to unordered contigs, as was the case with the Drosophila dozen.

The work presented here can be extended in at least two ways: by revising the calculation of Kr, and
by estimating other statistics from the average shustring length. Figure 3 shows that the moment-based
estimation of K developed in this paper fails for K> 0.55 because then the average shustring length is
essentially constant. A maximum likelihood estimator might be more powerful and allow distance esti-
mation for more divergent sequences. This would be important if Kr were to be applied in guide tree
reconstruction.

As to estimating other statistics, population parameters such as the scaled neutral mutation rate (Hartl
and Clark, 1997, p. 319), y, are a primary target, since genetic diversity is so low that average shustring
length would be a very sensitive indicator. We expect that there is going to be heightened interest in
alignment-free estimation of such population genetic parameters in the wake of ongoing comparative
sequencing projects such as the 1000 genomes projects for Arabidopsis, Drosophila, and human.
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