Statistics of Divergence Times
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Given the number of nucleotide substitutions between two species (K) and the substitution rate v, the expectation
of the corresponding divergence time is usually calculated as K/(2v). This is strictly true only if v is regarded as a
constant because the ratio of two random variables, such as K/(2v), has distributional properties different from those
of the distribution of K. Therefore, both the mean and any confidence interval for divergence times are unknown
in this situation. We model the distribution of K and v using the Gamma distribution and calculate the mean and
95% confidence interval for the corresponding divergence time. These calculations are compared with results ob-
tained by bootstrapping sequence data from the model plant Arabidopsis thaliana and its relatives. We show that
for nonoverlapping pairs of phylogenetic distances, our method approaches the bootstrap results very closely. In
contrast, regarding the mutation rate as a constant leads to strong underestimation of the confidence interval. An
implementation of our method of computing divergence times is accessible through a web interface at http://

www.soft.ice.mpg.de/cite.

Introduction

The question of how distantly two taxa are sepa-
rated from their last common ancestor is probably as old
as biology itself. With DNA data, the expected diver-
gence time between taxa i and j, Tj;, can be computed
in a straightforward way if the mutation rate is regarded
as constant:

emy = EK)
. 2 X E(v)’

where K;; is the number of substitutions per site between

taxai and j, and v is the number of substitutions per site

per year. If we further let [K;, K;] be a 100(1 — «)%

confidence interval for Kj;, the corresponding confidence

interval for Tj; is

[Ty, T2 = [Ki/(2v), Kl (20)].

However, v is usually estimated from the number
of substitutions between a pair of taxa that can be dated,
e.g., by reference to fossil data, and hence is a random
variable itself. This complicates the computation of both
the mean and the confidence interval for divergence
times. As we shall see, the difference between regarding
v as a random variable and regarding it as constant is
much more marked for the confidence interval than for
the mean.

In order to develop an intuition for the calculation
of divergence times, we carried out a set of exploratory
simulations. Let K and v be normally distributed random
variables with means 0.141 and 1.46 X 10-8 and stan-
dard deviations 0.024 and 0.025 X 10-°. These are bi-
ologically meaningful values. We drew 10° random
numbers from these distributions and calculated the ex-
pected 95% confidence interval for the corresponding
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divergence time as [2.22 X 10%, 1.02 X 107]. Regarding
the mutation rate as fixed led to the underestimation of
this interval by approximately 30% (fig. 1).

Steel, Cooper, and Penny (1996) recognized this
problem and suggested the following solution: let [v,,
v,] be a 100(1 — «/2)% confidence interval for v. In
this case, [K4/(2v,), Ky/(2v;)] is thought to be a 100(1
— a)% confidence interval of the divergence time (Steel,
Cooper, and Penny 1996). This method did indeed lead
to a wider confidence interval than that obtained for
fixed v, but this time, the interval was about 70% wider
than expected (fig. 1). Furthermore, the mathematical
justification for their proposed method is unclear. In the
following, we shall present a solution to this problem
and apply it to the divergence between the model plant
Arabidopsis thaliana and its relatives among the
crucifers.

Materials and Methods
Derivation of a Probability Density Function of the
Divergence Time

Variation in the substitution rate among sites along
a DNA sequence is often modeled by a Gamma prob-
ability distribution (Yang 1996). In these models, the
number of substitutions is negative binomially distrib-
uted (Stuart and Ord 1994, p. 182). Equating the first
and second moments of the negative binomial distribu-
tion with those of a Gamma distribution, the two param-
eters a (shape) and b (scale) of the Gamma distribution
can be uniquely determined. For the biologically rea
sonable parameters tested, the Gamma distribution pro-
vides an excellent approximation of the negative bino-
mial distribution. Furthermore, if the number of substi-
tutions in a gene (H) is Gamma-distributed, then the
number of substitutions per site K = H/n, where n de-
notes the number of sites, is also Gamma-distributed.
Our method starts with this assumption. The density
function of the Gamma distribution is

baexp(— g>xa1

I'(a)

f(x) = , x = 0.
We assume that we are provided with measurements for
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Fic. 1.—Ninety-five percent confidence intervals for the diver-
gence time of a pair of taxa obtained by different methods. [] = true
mean and confidence interval as determined by simulation; % = mean
and confidence interval for fixed mutation rate; A = mean and con-
fidence interval according to Steel, Cooper, and Penny (1996).

(1) mean K and standard deviation o of the per-base
substitution rate between a pair of sequences, the target
pair, and for (2) mean v and standard deviation 7 of the
mutation rate per base per year of a second sequence
pair, the reference pair. As explained above, we assume
that the random variables K and v are Gamma-distributed.
The corresponding parameters are (K/o)? and o?/K for
the distribution of K, and (v/7)? and 72/v for the distri-
bution of v. Now, we need to determine the probability
density of the ratio Z = K/(2v). Note that 2v is adso
Gamma-distributed with parameters (v/T)? and 213/v.
Assuming that K and v (and therefore also K and 2v)
are statistically independent, the density of the ratio is

t2) = f xF5, (09 0 i, (1)

0

where f,, and fx denote the Gamma densities for K and
2v, respectively. Abbreviating n = v/t and £ = K/o and
substituting the respective Gamma density functionsinto
equation (1), one finds

G
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This can be dightly simplified to

1

scale(K) “ZZHZ scale(K)
scale(2v) scale(2v)

f2(2 =

2402’
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where B(., .) denotes the Euler Beta function. If the two
scale parameters, scae(K) = o?/K and scale(2v) = 212/
v, were identical, equation (2) would reduce to the Beta
distribution of the second kind (Stuart and Ord 1994, p.
190). Numerical integration of equation (2) with appro-
priate integration bounds yields means and confidence
intervals for the desired divergence times. A program
implementing these computations is accessible via a
web interface at http://soft.ice.mpg.de/cite.
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Fic. 2—Neighbor-joining tree of Arabidopsis thaliana and some
of its cruciferous relatives based on the number of synonymous sub-
stitutions at the chalcone synthase locus. Sequence data are taken from
Koch, Haubold, and Mitchell-Olds (2000).

Bootstrap Simulation

In order to simulate the null distribution of diver-
gence times, we generated pseudosamples using the
bootstrap procedure (Efron 1979): an alignment of ho-
mologous protein-coding sequences was created, con-
sisting of one reference pair, with a known (or assumed)
divergence time, and a target pair. Pseudosamples were
generated by sampling columns of codons with replace-
ment and recalculating the synonymous mutation rate
from the reference pair, the synonymous substitution
rate from the target pair, and the corresponding diver-
gence time. Substitution rates were calculated using the
method of Li (1993) as implemented by Wolfe (1993).
The average of the simulated divergence times was used
as an estimator of the null distribution’s mean. Further,
the bootstrapped divergence times were sorted, and the
desired 100(1 — «)% confidence interval was obtained
by removing the top and bottom 100 X «/2% of their
distribution.

Results

We applied bootstrap simulations and the numerical
method outlined above to the complete coding sequence
of the chalcone synthase locus (Chs) from A. thaliana
and its relatives among the crucifers (Koch, Haubold,
and Mitchell-Olds 2000). As a reference pair, we chose
the crucifers Cardamine amara and Barbarea vulgaris
(fig. 2). From pollen data, these are estimated to have
diverged 6 MYA (Koch, Haubold, and Mitchell-Olds
2000). For the comparisons between A. thaliana and Ar-
abidopsis halleri, Capsella rubella, and Arabidopsis



Table 1
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Comparison of Divergence Times Calculated According to the Method Proposed in this Paper (Gamma) and According
to the Traditional Method Based on a Fixed Mutation Rate (Fixed)

DiVERGENCE TIME (Myr)

Bootstrap Gamma Fixed
TAXA Mean Cl Mean Cl Error (%) Mean Cl Error (%)
At/Ah. ..... 5.2 [3.2, 8.0] 5.2 [3.3, 8.0 13 51 [3.4, 6.8] 29.9
At/Cr. ..... 11.3 [7.6, 16.4] 11.3 [7.5, 16.4] 0.8 11.0 [8.3, 13.7] 38.8
At/Ab. ..... 22.4 [15.4, 32.2] 22.3 [15.2, 31.9] 3.0 21.8 [17.2, 26.4] 45.2
CaBwv. ..... 6.2 [4.2, 8.7] 6.2 [4.2, 8.8] 29 6.2 [4.3, 8.0] 189
At/Buv. ..... 15.0 [10.4, 21.3] 15.0 [10.1, 21.6] 55 14.6 [11.2, 18.0] 37.6
Ab./Bv. .... 22.8 [15.9, 32.5] 28.8 [15.6, 32.6] 24 22.3 [17.5, 27.0] 42.8

Note.—For each method, the mean, 95% confidence interval (Cl) and error are quoted. The error was calculated as the difference between the bootstrapped
interval and the interval concerned, divided by the bootstrap interval, times 100. Ait. = Arabidopsis thaliana; A.h. = Arabidopsis halleri spp. halleri; C.r. =
Capsella rubella; A.b. = Arabis blepharophylla; C.a. = Cardamine amara; B.v. = Barbarea vulgaris; c.f., figure 2.

blepharophylla, the results of our method deviated from
the bootstrap results by <3%, compared with =30% for
fixed mutation rate (table 1). In all of these examples,
C. amara and B. vulgaris were used as the reference
taxa. When we turned the calculation on its head and
fixed the divergence of A. thaliana and A. blepharo-
phylla at 22.4 Myr, the corresponding divergence time
for C. amara and B. vulgaris was estimated as 6.2 Myr,
which was again well approximated by our Gamma
method (table 1).

In the examples presented so far, the calculations
were always based on four taxa and the two nonover-
lapping distances that could be formed between them
(fig. 3). In order to investigate a triplet of sequences, we
calculated the divergence between A. thaliana and B.
wvulgaris while using B. vulgaris and C. amara as ref-
erence sequences, as in the first three examples. This
returned the worst agreement with the bootstrap results
(5.5% deviation from bootstrap result; table 1), although
our method was still much more reliable than the tra-
ditional method based on a fixed mutation rate (37.6%
deviation from bootstrap result; table 1). When we con-
sidered pairs of distances with less overlap, the fit be-
tween bootstrap and analytical results improved again to
2.4% error (table 1; A. blepharophylla/B. vulgaris).

1 2 3 4 1 2 3

Fic. 3.—Random topologies for three and four taxa. In the left
panel, distances between taxa 1/2 and taxa 3/4 do not overlap, while
in the right panel distances between taxa 1/2 and 2/3 share part of the
phylogenetic tree and are therefore not independent.

Discussion

The computation of divergence times is a standard
part of phylogenetic analyses. Here, we concentrated on
the apparently simple problem of computing divergence
times given the number of substitutions (K) and the cor-
responding mutation rate (v) for a particular pair of taxa.
In the past, this calculation was often performed under
the implicit assumption that the mutation rate could be
regarded as constant. However, it is inconsistent to treat
the mutation rate as a constant and the number of sub-
dtitutions as arandom variable. The justification for such
an approach might be that for real-world examples it
does not matter whether or not the mutation rate is treat-
ed as constant. Our bootstrap simulations show that the
difference is rather large (fig. 1) and that the assumption
that the mutation rate is constant leads to an underesti-
mation of the confidence interval around the divergence
time (table 1).

A hurdle to treating both the substitution and the
mutation rate as random variables is the computational
complications introduced by such an approach. Here, we
sketched the derivation of equation (2), which leads to
results that are close to those obtained by bootstrap sim-
ulation. The method works particularly well if it is based
on pairs of nonoverlapping distances (fig. 3 and table
1). For pairs of overlapping distances, the bootstrap re-
sults may be less well approximated by formula (2),
athough the assumption of a constant mutation rate
leads to a still greater error (table 1; A. thaliana/B. vul-
garis). The reason for the greater error with strongly
overlapping distances is that this violates the assumption
that v and K may be treated as independent random var-
iables. This assumption is central to the derivation of
formula (1) and therefore also to that of formula (2), on
which we based our analytical calculations. If the over-
lap is reduced, the fit between simulation and analytical
result also improves (table 1; A. blepharophylla/B. vul-
garis). But even for comparisons with significant over-
lap, our method provides a reasonably accurate and
computationally efficient alternative to bootstrap simu-
lation for the calculation of confidence intervals around
divergence times.
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