
ms2dna, v. 1.12: Convert Simulated Haplotype Data to DNA
Sequences

Bernhard Haubold & Peter Pfaffelhuber

December 13, 2011

Abstract

ms2dna is a program for converting haplotypes generated by the popular coalescent simulation programs ms
or macs to DNA sequence data.

Introduction
When testing DNA sequence analysis tools, it is often desirable to simulate sequence samples that have evolved
under well defined scenarios. A simple method to achieve this is to convert the haplotypes generated by available
coalescent simulators to DNA sequences. Perhaps the most widely used coalescent simulator is ms and its user
interface an output format have become de facto standards in the field [2]. Among the alternatives macs is
particularly interesting as it can simulate long sequences with realistic recombination rates [1]. Output generated
by macs can be converted to ms-format using msformatter. Hence I restrict my description to the output of
ms, a sample of which is stored in the file simpleTest.dat and looks like this:

ms 3 2 -t 10 -r 3 1000
52440 47412 34298

//
segsites: 4
positions: 0.1544 0.1855 0.2341 0.7006
1110
0110
0001

//
segsites: 7
positions: 0.2051 0.3380 0.3761 0.3982 0.4218 0.7364 0.8214
0000100
1111000
0000011

The first line repeats the original command with which ms was run. In this case it means that two samples of size
three are generated with neutral mutation parameter θ = 4Nµ = 10 and recombination parameter R = 4Nρ = 3
acting on a sequence of 1000 recombining loci; we can think of these as 1000 bp. The result consists of two sets
of three sequences. The first set has 4 segregating sites (mutations), the second 7. These mutations are modeled as
falling onto the interval between 0 and 1, in the first data set they occur at positions 0.1544, 0.1855, 0.2341, 0.7006.
Each row of zeros and ones represents a haplotype, where we can interpret a zero as the wild type and a 1 as the
mutant genotype.

The purpose of ms2dna is to convert the haplotypes generated by ms into the corresponding DNA sequences
of a certain length. There already exists a freely available program that is often used for this purpose: seq-gen [3]
takes as input a genealogy, which might have been produced by ms, and generates a compatible sequence sample.
In contrast, ms2dna directly converts the haplotypes generated by ms to DNA sequence data. This may be

1

advantageous in situations where the sample is generated by an ancestral recombination graph rather than by a
tree.

Compilation
The program ms2dna is distributed as a compressed archive containing C-source code, test data and documenta-
tion. The software is developed on a computer running the Linux operating system and the following instructions
for compiling and using the program refer to a UNIX-type system. Compilation on any other platform should be
simple as long as a C-compiler is available. In order to generate the program from the source distribution, unpack
the archive:

tar -xvzf ms2dna_XXX.tgz

where XXX indicates the current program. Change into the directory thus generated

cd Ms2dna_XXX

and compile the program

make

This generates the executable ms2dna, which can now be run

./ms2dna -h

to return the options list. In order to convert the supplied simple test data set execute the command

./ms2dna < simpleTest.dat

Alternatively, the mutations specified by the test data can be applied to an external ancestral sequence:

./ms2dna -t template.fasta < simpleTest.dat

Program Details

Input
ms2dna takes two kinds of input:

1. Haplotype information generated by ms, and optionally a

2. template sequence that gets mutated.

By default ms2dna reads the haplotype information from the standard input (STDIN); it can also read it from
one or more files listed after the options. The optional template sequence is read from the file specified by the
-t option. This is expected to contain a single DNA sequence in FASTA format of length equal to the number of
residues simulated by ms and containing exclusively the characters [acgtACGT].

The program starts by reading parameters from the command line echoed by ms. In particular, it reads the
length of the DNA sequence from the second argument of the -r switch. For recombination-free data run ms with
0 as the first argument of -r, e.g.

ms 3 1 -t 10 -r 0 1000 | ms2dna

generates three recombination-free sequences of one kb length. Similar output can be generated with macs using
the command

macs 3 1000 -t 0.01 2> /dev/null | msformatter | ms2dna -a

2

Output
The output is printed to the standard output stream (STDOUT). The output is by default in FASTA format. Al-
ternatively, the -f switch can be used to request my very own “population genetics format” (pgf), which is like
FASTA except that the first line consists of three numbers specifying

1. number of taxa

2. number of nucleotides

3. starting position

Each sample generated by ms is interpreted as representing data from an independent locus. This is also reflected
in the sequence headers where the y-th sequence of the x-th locus would be identified as

>LX_SY

The example data contained in the file simpleTest.dat consists of two loci from which three sequences were
sampled each.

The file migrationTest.dat contains simulated data drawn from a structured population consisting of
two subpopulations. For the interpretation of such data it is often convenient to include population information
in the sequence identifier. The z-th sequence from the y-th population at the x-th locus is therefore labeled by
ms2dna

>LX_PY_SZ

Mutation Model
ms implements the infinite sites model, i. e. no position in a sequence can mutate twice. This is guaranteed by
representing the positions of mutations as random real numbers. With discrete sequences a given position in a
DNA sequence may be hit twice. In this case, ms2dna draws a new random position. Alternatively, if the option
-m is used ms looks the closest hitherto unmutated position in the neighborhood. In case the number of segregating
sites exceeds the number of mutable positions, ms2dna prints a warning, e.g.:

#WARNING: number of segregating sites (1001) > number of mutable sites (1000)

However, as long as the sequence length is much larger than the expected number of segregating sites, this should
happen very rarely.

For each sample parsed by ms2dna a random ancestral sequence is either generated from scratch or read from
the template file (if specified). The ancestral sequence is then mutated at the positions output by ms. The G/C
content can be set using the -g switch. Under the default G/C content (0.5), all nucleotides mutate with equal
probability into the other three nucleotides. If the G/C content 6= 0.5, this affects both the ancestral as well as in
the mutated positions (as expected), unless a template sequence is supplied. In that case the G/C content affects
only the spectrum of derived alleles.

Random Number Generator
The sequences generated by ms2dna are, of course, random. As a result, if ms2dna is run repeatedly on the same
input data, different sequences are generated every time. In order to guarantee this behavior, while still allowing
the user to switch it off conveniently, ms2dna looks for a seed from three different sources in the following order

1. the argument to the -s switch; if this is not supplied (default),

2. the number contained in the file randomSeed.dat; if this does not exist,

3. the system clock.

At the end of a run a seed for the next run is stored in randomSeed.dat.

3

Listings
This section contains listings of the code for the central parts of ms2dna.

0.1 The Driver Program: ms2dna.c

1 /***** ms2dna.c ***************************************
* Description: Convert haplotypes from Hudons’s

* ms program to DNA sequence data.

* Reference: Hudson, R. R. (2002). Generating

* samples under a Wright-Fisher neutral model
6 * of genetic variation. Bioinformatics 18: 337-338.

* Author: Bernhard Haubold, haubold@evolbio.mpg.de

* Date: Tue Aug 14 15:15:47 2007.

* License: GNU General Public

***/
11 #include <stdio.h>

#include <stdlib.h>
#include <string.h>
#include <time.h>
#include <unistd.h>

16 #include "eprintf.h"
#include "interface.h"
#include "stringUtil.h"
#include "sample.h"
#include "ran.h"

21

int runAnalysis(FILE *fpin, Args *args);

int main(int argc, char *argv[]){
char *version;

26 Args *args;
FILE *fpin;
int i;

version = "1.12";
31 setprogname2("ms2dna");

args = getArgs(argc, argv);

if(args->h == 1){
printUsage(version);

36 return 0;
}else if(args->e == 1){
printUsage(version);
return -1;

}else if(args->p){
41 printSplash(version);

return 0;
}

if(args->numInputFiles == 0){
46 fpin = stdin;

runAnalysis(fpin, args);
}else{

4

for(i=0;i<args->numInputFiles;i++){
fpin = efopen(args->inputFiles[i],"r");

51 runAnalysis(fpin, args);
fclose(fpin);

}
}
free(args);

56 free(progname());
return 0;

}

int runAnalysis(FILE *fpin, Args *args){
61 Sample *sample;

FILE *fpout = stdout;

sample = initializeSample(fpin, args);
if(args->f == 1 && sample->npop != 2){

66 printf("ERROR[ms2dna]: need two populations for ima output format\n");
return -1;

}
if(args->f == -1)
fprintf(fpout,"%d %d 1\n",sample->nsam*sample->howmany,sample->nsite);

71 if(args->f == 1){
fprintf(fpout,"Sample generated by ms2dna\n");
fprintf(fpout,"#Comment\n");
fprintf(fpout,"P1 P2\n");
fprintf(fpout,"%d\n",sample->howmany);

76 }
while((sample = getSample()) != NULL){
outputSample(fpout);

}
freeSample();

81 return 0;
}

0.2 Sample Processing: sample.c

/***** sample.c **************************************
* Description: Functions for manipulating a sample

3 * generated by Hudson’s ms program.

* Reference: Hudson, R. R. (2002). Generating samples

* under a Wright-Fisher neutral model of genetic

* variation. Bioinformatics 18: 337-338.

* Author: Bernhard Haubold, haubold@evolbio.mpg.de
8 * Date: Tue Aug 14 20:35:23 2007.

* License: GNU General Public

***/
#include <stdio.h>
#include <stdlib.h>

13 #include <string.h>
#include <time.h>
#include <math.h>
#include <unistd.h>
#include <fcntl.h>

18 #include "eprintf.h"

5

#include "interface.h"
#include "sample.h"
#include "ran.h"
#include "sequence_data.h"

23 #include "stringUtil.h"

#define MAXLEN 1000

Sample *sample;
28 Args *args;

FILE *fp;
int sampleCounter;

void expandSample();
33 void getTemplate(char *file);

int comp(const void *v1, const void *v2){
return (*(int *)v1 - *(int *)v2);

}
38

Sample *initializeSample(FILE *filePointer, Args *arguments){
float rho;
char *token;

43 int i, idum;
FILE *fpra;

args = arguments;
fp = filePointer;

48 sampleCounter = 0;

sample = (Sample *)emalloc(sizeof(Sample));
sample->line = (char *)emalloc((MAXLEN+1) * sizeof(char));
sample->line[0] = ’\0’;

53 /* get first line of input; this contains the command with which ms was
started */

sample->line = fgets(sample->line, MAXLEN, fp);
strtok(sample->line, " ");
sample->nsam = atoi(strtok(NULL, " "));
if(args->a)

58 sample->nsite = atoi(strtok(NULL, " "));
else
sample->howmany = atoi(strtok(NULL, " "));

sample->npop = 1;
while((token = strtok(NULL, " ")) != NULL){

63 if(strcmp(token, "-r") == 0){
rho = atof(strtok(NULL, " "));
if(!args->a)
sample->nsite = atoi(strtok(NULL, " "));

}else if(strcmp(token, "-I") == 0){
68 sample->npop = atoi(strtok(NULL, " "));

sample->sampleSizes = (int *)emalloc(sample->npop*sizeof(int));
for(i=0;i<sample->npop;i++)
sample->sampleSizes[i] = atoi(strtok(NULL, " "));

6

}else
73 sample->sampleSizes = NULL;

}
if(sample->nsite == 0 && args->a){
fprintf(stderr,"ERROR [sample.c]: please use ms with the -r switch.\n")

;
exit(-1);

78 }
sample->seq = (char **)emalloc(2 * sizeof(char *));
if(args->t)
getTemplate(args->t);

else{
83 sample->seq[0] = (char *)emalloc((sample->nsite + 1) * sizeof(char));

sample->seq[1] = (char *)emalloc((sample->nsite + 1) * sizeof(char));
}
sample->maxlen = 1;
sample->segsites = 0;

88 sample->haplotypes = (char **)emalloc((sample->nsam + 1)*sizeof(char *));
for(i=0;i<sample->nsam;i++)
sample->haplotypes[i] = (char *)emalloc((sample->maxlen + 1)*sizeof(

char));
sample->map = (int *)emalloc(sample->maxlen * sizeof(int));
sample->positions = (float *)emalloc(sample->maxlen*sizeof(float));

93

/* seed and initialize random number generator */
if(args->s != 0){
idum = args->s;

}else if((fpra = fopen("randomSeed.dat","r")) != NULL){
98 if(!fscanf(fpra,"%d",&idum))

printf("WARNING[sample.initializeSample]: Something is wrong writing
the the seed of the random number generator to file.\n");

fclose(fpra);
}else
idum = -time(NULL);

103 init_genrand(idum);
return sample;

}

void getTemplate(char *file){
108 int fd;

Sequence *sequence;
int *dic, i;

if ((fd = open (file, O_RDONLY, 0)) == 0)
113 eprintf("ERROR [ms2dna]: cannot open template file %s for reading\n",

file);
sequence = read_fasta(fd);
close(fd);

if(sequence->num_seq > 1){
118 printf("ERROR[ms2dna]: the template file contains %d sequences\n",

sequence->num_seq);
printf("\tbut the program can only deal with template files containing

a single sequence.\n");

7

exit(0);
}
sequence->len--;

123 if(sequence->len != sample->nsite){
printf("ERROR[ms2dna]: the template file contains %ld nucleotides,\n",

sequence->len);
printf("\tbut the ms simulation deals with %d sites.\n",sample->nsite);
printf("\tthese two numbers need to be identical.\n");
exit(0);

128 }
dic = NULL;
dic = get_restricted_dna_dictionary(dic);
for(i=0;i<sequence->len;i++)
if(!dic[(int)sequence->seq[i]]){

133 printf("ERROR[ms2dna]: the template sequence contains residues other
than [acgtACGT] at position %d: %c.\n",i,sequence->seq[i]);

exit(0);
}

strtoupper(sequence->seq);
sample->seq[0] = sequence->seq;

138 sample->seq[1] = (char *)emalloc((sample->nsite + 1) * sizeof(char));
}

/* getSample: read a haplotype sample from a file pointer assumed to be
open */

Sample *getSample(){
143 int i;

char *dum;
double r1, r2;

dum = emalloc(250*sizeof(char));
148 while(fgets(sample->line,MAXLEN,fp) != NULL){

if(sample->line[0] == ’s’){
sscanf(sample->line, "segsites: %d", &sample->segsites);
if(sample->segsites >= sample->maxlen){
sample->maxlen = sample->segsites+1;

153 expandSample(sample);
}
if(!fscanf(fp,"%s",dum)){
printf("ERROR[sample.getSample()]: Cannot read seed for random

number generator from file.\n");
exit(-1);

158 }
if(sample->segsites > 0){
for(i=0;i<sample->segsites;i++)

if(!fscanf(fp, "%f", sample->positions + i))
printf("WARNING[smple.getSample()]-1: Something is wrong with

reading the sample.\n");
163 /* generate extra significant digits (ms only generates 4) */

for(i=0;i<sample->segsites;i++){
r1 = genrand_real1();
r2 = genrand_real1();
if(r1>0.5)

168 sample->positions[i] += r2/10000.;

8

else
sample->positions[i] -= r2/10000.;

}
for(i=0;i<sample->nsam;i++){

173 if(!fscanf(fp," %s",sample->haplotypes[i]))
printf("WARNING[smple.getSample()]-2: Something is wrong with

reading the sample.\n");
}

}
free(dum);

178 return sample;
}

}
free(dum);
return NULL;

183 }

void outputSample(FILE *fpo){
int i, j, stepsRight, stepsLeft;
double r1, r2;

188 int p;
char nuc;

if(!args->t){
/* generate ancestral sequence */

193 for(i=0;i<sample->nsite;i++){
r1 = genrand_real1();
r2 = genrand_real1();
if(r1 <= args->g){
if(r2 <= 0.5)

198 sample->seq[0][i] = ’G’;
else

sample->seq[0][i] = ’C’;
}else{
if(r2 <= 0.5)

203 sample->seq[0][i] = ’A’;
else

sample->seq[0][i] = ’T’;
}

}
208 }

for(i=0;i<sample->nsite;i++)
sample->seq[1][i] = ’x’;

if(sample->segsites > sample->nsite){
printf("#WARNING: number of segregating sites (%d) > number of mutable

sites (%d)\n",sample->segsites,sample->nsite);
213 printf("#Are you dealing with macs input? If so, please use the -a

option.\n");
}
/* map segregating sites onto sequence positions */
for(i=0;i<sample->segsites;i++){
p = sample->positions[i] * sample->nsite;

218 while(sample->seq[1][p] != ’x’){ /* check for double hits */
if(args->m == 0){

9

p = genrand_real1() * sample->nsite;
}else if(args->m == 1){
stepsLeft = 0;

223 stepsRight = 0;
/* walk to the right */
for(j=p+1;j<sample->nsite;j++){

stepsRight++;
if(sample->seq[1][j] == ’x’)

228 break;
}
/* walk to the left */
j = (p-1 > 0) ? p-1 : 0;
if(j){

233 for(;j>=0;j--){
stepsLeft++;
if(sample->seq[1][j] == ’x’)

break;
}

238 }
if((stepsLeft > 0) && (stepsLeft < stepsRight))

p -= stepsLeft;
else

p += stepsRight;
243 }

}
sample->map[i] = p;
sample->seq[1][p] = ’y’;

}
248 /* map the last segregating site to nonsense */

sample->map[sample->segsites] = -1;
/* generate nucleotides for mutant positions */
for(i=0;i<sample->segsites;i++){
r1 = genrand_real1();

253 r2 = genrand_real1();
p = sample->map[i];
if(r1 <= args->g){ /* is the derived state G/C? */

if(sample->seq[0][p] == ’G’) /* is the ancestral state G? */
nuc = ’C’; /* mutate to C */

258 else if(sample->seq[0][p] == ’C’) /* is the ancestral state C? */
nuc = ’G’; /* mutate to G */

else /* is the ancestral state A/T?

*/
if(r2 <= 0.5) /* draw equiprobable G or C

*/
nuc = ’G’;

263 else
nuc = ’C’;

}else{ /* is the derived state A/T? */
if(sample->seq[0][p] == ’A’) /* is the ancestral state A? */
nuc = ’T’; /* mutate to T */

268 else if(sample->seq[0][p] == ’T’) /* is the ancestral state T? */
nuc = ’A’; /* mutate to A */

else /* is the ancestral state G/C?

*/

10

if(r2 <= 0.5) /* draw equiprobable A or T

*/
nuc = ’A’;

273 else
nuc = ’T’;

}
sample->seq[1][p] = nuc;

}
278 sampleCounter++;

if(args->f == 0)
printFasta(fpo);

else if(args->f == 1)
printIma(fpo);

283 else if(args->f == 2)
printGenetree(fpo);

}

void printGenetree(FILE *fpo){
288

}

void printIma(FILE *fpo){
int cc; /* character chounter */

293 int i, j, k;
int ns; /* number of segregating sites */
int pc; /* population counter */
int sc; /* sequence counter (within population) */
int maxLen = 10;

298

pc = 0;
sc = 0;
fprintf(fpo,"L_%d %d %d %d I 1\n",sampleCounter,

sample->sampleSizes[0],sample->sampleSizes[1],sample->nsite);
303 for(i=0;i<sample->nsam;i++){

if(sc == sample->sampleSizes[pc]){
sc = 0;
pc++;

}
308 sc++;

sprintf(sample->line,"P%d_S%d",pc+1,sc);
cc = strlen(sample->line) < maxLen ? strlen(sample->line) : maxLen;
/* print 10 characters of haplotype label */
for(j=0;j<cc;j++)

313 fprintf(fpo,"%c",sample->line[j]);
for(k=j;k<10;k++)

fprintf(fpo,"%c",’ ’);
/* print haplotype */
ns = 0;

318 for(j=0;j<sample->nsite;j++){
if(j == sample->map[ns]){ /* print derived nucleotide */
ns++;
fprintf(fpo,"%c",sample->seq[1][j]);

}else /* print ancestral nucleotide */
323 fprintf(fpo,"%c",sample->seq[0][j]);

11

}
fprintf(fpo,"%s","\n");

}
}

328

void printFasta(FILE *fpo){
int ns; /* segregating sites counter */
int nc; /* nucleotide counter */
int sc; /* sequence counter (within population) */

333 int pc; /* population counter */
int i, j;
int lineLen;

lineLen = 70;
338 nc = 0;

sc = 0;
pc = 0;
for(i=0;i<sample->nsam;i++){
fprintf(fpo,">");

343 if(sample->howmany > 1)
fprintf(fpo,"L%d",sampleCounter);

if(sample->npop > 1){
if(sample->nsam > 1)
fprintf(fpo,"_P%d",pc+1);

348 else
fprintf(fpo,"P%d",pc+1);

}
if(sample->npop > 1 || sample->howmany > 1)

fprintf(fpo,"_S%d\n",++sc);
353 else

fprintf(fpo,"S%d\n",++sc);
if(sample->npop > 1){

if(sc == sample->sampleSizes[pc]){
sc = 0;

358 pc++;
}

}
/* print haplotype */
nc = 0;

363 ns = 0;
qsort(sample->map,sample->segsites,sizeof(int),comp);
for(j=0;j<sample->nsite;j++){

if(ns >= sample->maxlen)
printf("ns: %d; sample->maxlen: %d\n",ns,sample->maxlen);

368 if(j == sample->map[ns]){ /* mutant position */
if(sample->haplotypes[i][ns] == ’1’){ /* print derived nucleotide

*/
if(!args->c){
fprintf(fpo,"%c",sample->seq[1][j]);

}else{
373 if((j+1)%3 == 0)

fprintf(fpo,"%c",sample->seq[1][j]);
else

fprintf(fpo,"%c",sample->seq[0][j]);

12

}
378 }else /* print ancestral nucleotide

*/
fprintf(fpo,"%c",sample->seq[0][j]);

ns++;
}else
fprintf(fpo,"%c",sample->seq[0][j]);

383 nc++;
if(nc == lineLen && j < sample->nsite - 1){
fprintf(fpo,"\n");
nc = 0;

}
388 }

/* if(nc != lineLen) */
fprintf(fpo,"\n");

}
}

393

/* increase space for individual haplotypes

*/
void expandSample(){

int i;
398

for(i=0;i<sample->nsam;i++)
sample->haplotypes[i] = (char *)erealloc(sample->haplotypes[i],sample->

maxlen*sizeof(char));
sample->map = (int *)erealloc(sample->map,sample->maxlen*sizeof(int));
sample->positions = (float *)erealloc(sample->positions,sample->maxlen*

sizeof(float));
403

}

/* freeSample: clean up after run of program:

* 1) free memory
408 * 2) update seed for random number generator

*/
void freeSample(){

int i;
FILE *fpra;

413

for(i=0;i<sample->nsam;i++){
free(sample->haplotypes[i]);

}
free(sample->haplotypes);

418 free(sample->positions);
free(sample->map);
free(sample->seq[0]);
free(sample->seq[1]);
free(sample->seq);

423 if(sample->sampleSizes)
free(sample->sampleSizes);

free(sample->line);
free(sample);
/* save seed of random number generator */

13

428 if(args->s == 0){
fpra = fopen("randomSeed.dat","w");
fprintf(fpra,"%d\n",(int)genrand_int32());
fclose(fpra);

}
433 }

Revision History
1. August 17, 2007: Version 0.1 produced

2. September 6 & 12, 2007: Version 0.2:

• Included treatment of structured populations

3. October 5, 2007: Version 0.3

• Fixed bug in treatment of multiple hits

4. October 27, 2007: Version 0.4

• Allowed S = 0

5. March 29, 2008: Version 1.0 released

6. September 2008: Version 1.1

• Included output in ima format

7. November 26, 2008: Version 1.2

• Fixed treatment of multiple hits for FASTA format (ima format still needs to be checked): if some
position, p, is hit repeatedly, the extra hit is moved to the next unmutated position starting from p + 1
and moving to the right while treating the sequence as circular.

8. April 14, 2009: Version 1.4

• Fixed treatment of data sets where the number of nucleotides modulo the line length is zero (in this
case the program inserted a superfluous carriage return).

9. April 21, 2009: Version 1.5

• Changed mutation model (again): if a mutated position is hit again, the program looks for the closest
unmutated position.

10. April 23, 2009: Version 1.6

• Fixed search for unmutated positions.

11. May 18, 2009: Version 1.7

• Introduced -m switch to control treatment of double mutations.

12. June 5, 2009: Version 1.8

• Introduced -c switch to mutate only third codon positions.

13. November 17, 2010: Version 1.9

• Implemented -t option to allow input of a template sequence.

14. June 10, 2011: Version 1.10

14

• Expanded position information to double precision.

15. September 1, 2011: Version 1.11

• Implemented -a option to deal with input generated via macs — msformatter [1].

16. December 13, 2011: Version 1.12

• Initialized last position of sample->map in line 249 of sample.c.

• Removed minor memory leaks.

References
[1] G. K. Chen, P. Marjoram, and J. D. Wall. Fast and flexible simulation of DNA sequence data. Genome

Research, 19:136–142, 2009.

[2] R. R. Hudson. Generating samples under a Wright-Fisher neutral model of genetic variation. Bioinformatics,
18:337–338, 2002.

[3] A. Rambaut and N. C. Grassly. Seq-gen: An application for the monte carlo simulation of dna sequence
evolution along phylogenetic trees. Bioinformatics, 13:235–238, 1997.

15

